
Practical guide to everyday Git commands

Solutions to 90% of your daily git challenges

Reference material to the below concepts with live examples

 Clone the rep

 Switch between branche

 Pulling the change

 Committing the change

 Pushing the change

 Managing the stas

 Branching ou

 Raising a PR

 Merge the branche

 Rebase the branche

 Resolving the conflict

 Squash the commit

 Revert and Rese

 Amends and Renam

 Cherry Pic

 Force push

Practical Git Guide

1. I want to clone a project and start going through the code.

Get the repo URL/link

Open your terminal

Navigate to the location in the terminal where you want your project to be cloned

Enter the command git clone URL

The repo URL can be found inside the repo.

Github repo link example

2. I have cloned the repo. But I am not able to see the proper code!!!

By default the main/master branch is active. Ask which branch has the relevant code

Navigate inside the cloned folder cd repo<-name>

Enter the command git switch <branch-name>

Note: The checkout command can also be used to switch the branch. git checkout <branch-
name>

3. Someone has made a few changes in the code and asked me to pull those
changes. What should I do?

Pull the changes git pull

4. I have modified the code and added changes. How do I commit my
changes?

First stage all the files and then commit your changes. You can create multiple commits.

Stage the files git add *

Commit the changes git commit -m 'Your commit message'

5. What if I want only some of my files added & pushed instead of all changes?

You can add files by mentioning the file/files with relative or full path. You can add files one by one

or multiple files at a time using the commands

Add single file git add <file-path>

Add multiple files git add <file1-path> <file2-path>

Similarly, to unstage a file use the command git reset <file>

6. I have modified/formatted some code while going through it. Now I want the
code to be back to the state as it was.

To reset all the changes git reset --hard

To reset a single file git checkout HEAD -- <file-path>

7. I have committed my changes. How can I undo my change?

You can undo the commit by resetting the HEAD. If you just want to undo the commit but let the

changes be present then use the soft attribute else if you do want the commit along with the

changes then use the hard attribute

git reset --soft HEAD~1 (undo with changes preserved)

git reset --hard HEAD~1 (undo with changes removed)

8. I have made some changes to the branch. Also, I wanted to pull the new
changes. But it is not working.

The command git pull may not work if the changes are done by someone else to the same files

which you have also modified.

Stash the changes git stash save <name of the change> -u

Pull the changes now git pull

Retrieve the changes git stash apply <n>

where n is the stash number. To get the list of stashes git stash list

Note: You can stash multiple changes and bring them back as and when you like to

9. After applying the stash, I am getting a lot of conflicts in the code.

If there are changes in the code on the region of the stashed code, it is expected to get conflicts.

You will have to manually resolve all the conflicts. (Do it carefully)

Below is the view of the VSCode, which helps in easily resolving the conflicts.

10. I have made some code changes. But I want to commit to a new separate
branch.

You can create a separate branch out of the current branch and commit it. This works both if you

have already made changes or are yet to start making changes.

Create a new branch git switch -c <my-branch-name>

Stage all the changes git add *

Commit the changes git commit -m "<some commit message>"

To switch between the branches use the command git checkout <original-branch-name>

Alternatively, checkout command can also be used to create the branch. git checkout -b <my-
branch-name>

Note: my-branch-name is your local branch and not available for anyone else unless you push it

11. I just committed but forgot to add a few files to the commit. Is there a way
to update the same commit with some modifications?

Yes. You can update the commit by amending your changes.

To add files git add <file-name> <file-name> ...

To update the commit git commit --amend --no-edit

To update with new commit message git commit --amend -m 'My new commit message' (This

command can also be used to update previous commit message without any code modifications)

--no-edit is used to avoid the prompt to edit commit message. If you wanna modify commit

message as well, during commit update, then do not include -m along with your commit message

Note: The amend updates the previous commit without creating a new one on top of the previous.

(in reality, Git discards the previous commit and replaces it with a new commit)

12. I am asked to raise a Pull Request (PR). What am I supposed to do?

You can follow the same steps as given in the previous question. Once done you will push the code

and raise a PR. It's that simple. Here we assume you are on the 'develop' branch and raising PR to

the 'main' branch.

Create a new branch git switch -c <my-branch-name>

Stage all the changes git add *

Commit the changes git commit -m "<some commit message>"

Push the changes git push (as the branch is not present on the remote, it will show the

command to use)

Enter git push --set-upstream origin <my-branch-name>

The URL to raise the PR will be automatically available as shown above. Use the link and open it in

the browser.

Now select the base branch to which you want to raise a PR and click on 'Create a PR'

13. I do not want a branch anymore. How can I delete the branch?

To delete a branch locally, check out a different branch than the one you want to delete. Here we

will delete the branch named 'develop'

Switch to other branch git checkout <other-branch>

Delete branch git branch -d <branch-name>

To delete the branch from remote as well

Delete remote branch git push -d <remote> <branch-name>

Note: If -d does not allow to delete a branch, use the -D . Example: git branch -D <branch-
name>

14. I want to rename my local and remote branches. How can I do it?

To rename a branch, checkout to the branch and rename it.

Check out other branch git checkout <your-branch-name>

Rename your branch git branch -m <new-branch-name>

Push to remote git push <remote> :<your-branch> <new-branch-name>

Set upstream git push <remote> -u <new-branch-name>

<remote> is usually origin

15. I have made some changes to the code on the branch on which all of the
developers are working. How can I publish my changes?

To move the changes from your local machine to remote (called origin), follow the below steps in

your terminal

Stage the files git add *

Commit the changes git commit -m "<some commit message>"

Push the changes git push

16. I created a commit and also pushed it. Is it possible to update that commit
now?

Yes. You can update the commit even after it is pushed. Everything will follow as mentioned in the

previous question, but you will have to force push.

git add <file-name> <file-name> ...

git commit --amend --no-edit or git commit --amend

git push -f or git push --force

Note: You need to be very careful while pushing forcefully, as it may eliminate other commits if

someone has done in between. Make sure you are working on the branch and no one else is

simultaneously working on the same or branching out from the branch at your commit.

17. I have created single/multiple commits. When I am trying to push my
changes, getting a rejected message. I am stuck!!!

The rejection could be because the remote branch might be ahead of the local branch. Different

techniques can be used here to achieve sync.

Pull the changes git pull

Continue with the merge commit created automatically

git push

If there are conflicts, then resolve them manually to proceed ahead as shown below.

18. I followed the above steps but got conflicts after git pull.

If there are code changes on the same region from multiple commits, conflicts will occur. You need

to resolve all the conflicts and proceed.

Resolve all the conflicts

Stage files git add <file-path>

Continue the merge git merge --continue

Push the changes git push

Note: If something goes wrong, in any of the above steps, then there is nothing to panic about. Just

run git merge --abort and redo the steps.

19. I have created single/multiple commits. When I am trying to push my
changes, getting a rejected message. Can I pull the new changes without
merging the commit (Rebase)?

Yes. You can pull the changes without a merge. This is called Rebase. I know you have heard it a

lot. It is very simple though.

Pull with rebase git pull --rebase

Push the changes git push

If you get conflicts, then solve all the conflicts. Then

git rebase --continue

Resolve all conflicts

Push the changes git push

Note: If something goes wrong, in any of the above steps, then there is nothing to panic about. Just

run git rebase --abort and redo the steps.

20. I have raised a PR (Pull Request). But it is showing conflicts.

PR will show conflicts if the new changes added to the source branch are conflicting with your

changes or your branch is lagging.

There are 2 main approaches to solve this.

Merge approach

Rebase approach

Follow any one of the approaches. Don't try both of them.

Assuming that your branch is develop and the source branch is main

Merge approach

Checkout to main branch git checkout main

Pull changes git pull

Checkout to your branch git checkout develop

Merge the changes git merge main

Resolve all the conflicts and add to staging git add <files>

If conflicts are present git merge --continue

Push the changes git push

Rebase approach

Checkout to main branch git checkout main

Pull changes git pull

Checkout to your branch git checkout develop

Rebase the branch git rebase main

Resolve all the conflicts and add to staging git add <files>

Run git rebase --continue after resolving the conflicts

Push the changes git push -f

Note: You may have to run git rebase --continue multiple times if there are multiple conflicts

on your multiple commits.

21. I have many commits. How can I transform them into a single commit
(squash)?

Converting multiple commits into one is known as Squashing. We will achieve this by rebasing with

the help of the interactive feature of the editor (VSCode). This will be both easier and simple.

Run git rebase -i HEAD~<n> (where n refers to the number of commits to squash)

Mark all the commits as 'Squash' except the oldest one

Click on 'Start rebase'

Enter the commit message

Note: If you had already pushed the commits, then you will have to use the command git push -
f to reflect squash on the remote branch as well.

22. I have many commits. How can I transform them into a single commit
(squash) with just commands?

You can use the technique of undoing to achieve this easily.

Undo the number of commits you need to squash git reset --soft HEAD~<n>

Commit them again git commit -m 'Commit message'

Note: If you had already pushed the commits, then you will have to use the command git push -
f to reflect squash on the remote branch as well.

23. I am trying to rebase my branch with the same or another branch. As I have
many commits, I am getting a lot of conflicts on every commit to rebase.

You can first squash all commits to one commit (Refer 21).

Once done, rebase the branch and resolve all conflicts in a single go. (Refer 20)

24. I have made changes and committed to a branch. I want to copy the same
changes to another branch.

To copy the changes of a commit from one branch to another, you can use cherry pick. First obtain

the commit id of the commit, which you want to copy.

Checkout the branch git checkout <destination-branch>

Cherry-pick the commit git cherry-pick <commit-id>

25. I have tried to cherry-pick as shown in 24. But I am getting conflicts.

If you get any conflicts, resolve the conflicts first. Once all the conflicts are resolved, they continue

the cherry-pick.

Add resolved files to stage git add <file-paths>

Continue cherry-pick git cherry-pick --continue

Note: If something goes wrong in between, reset the process by using the command git cherry-
pick --abort (You can start the process again)

26. I have multiple commits which I want to move to a different branch.

To copy a range of commits from one branch to another, you can note down the older commit id

from history and the newer commit id.

Checkout the branch git checkout <destination-branch>

Cherry pick the commit git cherry-pick <old-commit-id>..<new-commit-id>

27. I have pushed my changes and got it merged. I want to revert it
immediately.

Revert creates a reverse commit where the changes made will reverse and is created as a new

commit. To revert a particular commit first, obtain its commit id.

Revert the commit git revert <commit-id>

Push the commit git push

28. How do I reset the code of my branch to the code of a different branch?

When resetting a branch to a different branch, the codebase on your branch will become the same

as the other branch. To achieve this, you can use the 'reset' command.

Checkout to the branch git checkout <your-branch-bame>

Reset with the branch name git reset --hard <source-branch>

In this case, 'your-branch-name' will match the codebase of 'source-branch'

29. I want to delete/undo the previous commit from my branch which I have
already pushed. I am not looking for a revert. I just want to delete it.

Revert will reverse the changes creating a new commit. If you want to remove the previous commit,

then you can undo and force push the branch.

Reset by undoing git reset --hard HEAD~<n> (n is the number of commits to undo)

Push the changes git push -f

Note: Force push is needed as the history of the branch is changing in this. If the commit is not

pushed then it is not needed.

Created by Sadanand Pai

Repo link: Practical Git Guide

