
1 | P a g e

Java programming
What is Java?

Java is a programming language and a platform. Java is a high level,

robust, object-oriented and secure programming language.

Java was developed by Sun Microsystems (which is now the subsidiary of

Oracle) in the year 1995. James Gosling is known as the father of Java.

Platform: Any hardware or software environment in which a program runs,

is known as a platform. Since Java has a runtime environment (JRE) and

API, it is called a platform.

Application
1. Desktop Applications such as acrobat reader, media player, antivirus,

etc.

2. Web Applications such as irctc.co.in, javatpoint.com, etc.

3. Enterprise Applications such as banking applications.

4. Mobile

5. Embedded System

6. Smart Card

7. Robotics

8. Games, etc.

Features of Java

Simple

Java is very easy to learn, and its syntax is simple, clean and easy to

understand. According to Sun Microsystem, Java language is a simple

programming language because:

o Java syntax is based on C++ (so easier for programmers to learn it after

C++).

2 | P a g e

o Java has removed many complicated and rarely-used features, for

example, explicit pointers, operator overloading, etc.

o There is no need to remove unreferenced objects because there is an

Automatic Garbage Collection in Java.

Object-oriented

Java is an object-oriented programming language. Everything in Java is an

object. Object-oriented means we organize our software as a combination of

different types of objects that incorporate both data and behaviour.

Platform Independent

Java is platform independent because it is different from other languages

like C, C++, etc. which are compiled into platform specific machines while

Java is a write once, run anywhere language. A platform is the hardware or

software environment in which a program runs.

Secured

Java is best known for its security. With Java, we can develop virus-free

systems. Java is secured because:

o No explicit pointer

o Java Programs run inside a virtual machine sandbox

Robust

The English mining of Robust is strong. Java is robust because:

3 | P a g e

o It uses strong memory management.

o There is a lack of pointers that avoids security problems.

o Java provides automatic garbage collection which runs on the Java

Virtual Machine to get rid of objects which are not being used by a Java

application anymore.

Architecture-natural

Java is architecture natural because there are no implementation dependent

features, for example, the size of primitive types is fixed.

Portable

Java is portable because it facilitates you to carry the Java bytecode to any

platform. It doesn't require any implementation.

High-performance

Java is faster than other traditional interpreted programming languages

because Java bytecode is "close" to native code.

Distributed

Java is distributed because it facilitates users to create distributed

applications in Java.

Multi-threaded

A thread is like a separate program, executing concurrently. We can write

Java programs that deal with many tasks at once by defining multiple

threads.

Dynamic

Java is a dynamic language. It supports the dynamic loading of classes. It

means classes are loaded on demand. It also supports functions from its

native languages, i.e., C and C++.

4 | P a g e

First Java Program

o class keyword is used to declare a class in Java.

o public keyword is an access modifier that represents visibility. It

means it is visible to all.

o static is a keyword. If we declare any method as static, it is known as

the static method. The core advantage of the static method is that there

is no need to create an object to invoke the static method. The main()

method is executed by the JVM, so it doesn't require creating an object

to invoke the main() method. So, it saves memory.

o void is the return type of the method. It means it doesn't return any

value.

o main represents the starting point of the program.

o String[] args or String args[] is used for command line argument.

o System.out.println() is used to print statement. Here, System is a

class, out is an object of the PrintStream class, println() is a method of

the PrintStream class.

What happens at runtime?

At runtime, the following steps are performed:

5 | P a g e

Q) Can you save a Java source file by another name than the class name?

Yes, if the class is not public. It is explained in the figure given below:

Q) Can you have multiple classes in a java source file?

Yes, like the figure given below illustrates:

Difference between JDK, JRE, and JVM

JVM

JVM (Java Virtual Machine) is an abstract machine. It is called a virtual

machine because it doesn't physically exist. It is a specification that provides

a runtime environment

6 | P a g e

JRE

JRE is an acronym for Java Runtime Environment. It is also written as Java

RTE. The Java Runtime Environment is a set of software tools which are

used for developing Java applications. It is used to provide the runtime

environment.

JDK

JDK is an acronym for Java Development Kit. The Java Development Kit

(JDK) is a software development environment which is used to develop Java

applications and applets. It physically exists. It contains JRE + development

tools.

Java Variables

A variable is a container which holds the value while the Java program is

executed. A variable is assigned with a data type.

Variable is a name of memory location. There are three types of variables in

java: local, instance and static.

1) Local Variable

A variable declared inside the body of the method is called local variable.

You can use this variable only within that method and the other methods in

the class aren't even aware that the variable exists.

A local variable cannot be defined with "static" keyword.

2) Instance Variable

A variable declared inside the class but outside the body of the method, is

called an instance variable. It is not declared as static.

3) Static variable

A variable that is declared as static is called a static variable. It cannot be

local. You can create a single copy of the static variable and share it among

all the instances of the class.

7 | P a g e

Data Types in Java

Data types specify the different sizes and values that can be stored in the

variable. There are two types of data types in Java:

1. Primitive data types: The primitive data types include boolean, char,

byte, short, int, long, float and double.

2. Non-primitive data types: The non-primitive data types

include Classes, Interfaces, and Arrays.

Unicode System

Unicode is a universal international standard character encoding that is

capable of representing most of the world's written languages.

Why java uses Unicode System?

Before Unicode, there were many language standards:

o ASCII (American Standard Code for Information Interchange) for

the United States.

o ISO 8859-1 for Western European Language.

o KOI-8 for Russian.

o GB18030 and BIG-5 for Chinese, and so on.

Problem

This caused two problems:

1. A particular code value corresponds to different letters in the various

language standards.

2. The encodings for languages with large character sets have variable length.

3. Some common characters are encoded as single bytes, other require

two or more byte.

8 | P a g e

Solution

To solve these problems, a new language standard was developed i.e. Unicode

System.

In unicode, character holds 2 byte, so java also uses 2 byte for characters.

lowest value:\u0000

highest value:\uFFFF

Operators in Java

Operator in Java is a symbol that is used to perform operations. For

example: +, -, *, / etc.

There are many types of operators in Java which are given below:

o Unary Operator,

o Arithmetic Operator,

o Shift Operator,

o Relational Operator,

o Bitwise Operator,

o Logical Operator,

o Ternary Operator and

o Assignment Operator.

Java Keywords

Java keywords are also known as reserved words. Keywords are particular

words that act as a key to a code. These are predefined words by Java so they

cannot be used as a variable or object name or class name.

9 | P a g e

Java Control Statements | Control Flow in Java

Java provides three types of control flow statements.

1. Decision Making statements

o if statements

o switch statement

2. Loop statements

o do while loop

o while loop

o for loop

o for-each loop

3. Jump statements

o break statement

o continue statement

Decision-Making statements:

As the name suggests, decision-making statements decide which statement

to execute and when.

1) If Statement:

In Java, the "if" statement is used to evaluate a condition. The control of the

program is diverted depending upon the specific condition. The condition of

the If statement gives a Boolean value, either true or false.

2) if-else statement

The if-else statement is an extension to the if-statement, which uses another

block of code, i.e., else block.

3) if-else-if ladder:

The if-else-if statement contains the if-statement followed by multiple else-

if statements. In other words, we can say that it is the chain of if-else

10 | P a g e

statements that create a decision tree where the program may enter in the

block of code where the condition is true.

4. Nested if-statement

In nested if-statements, the if statement can contain a if or if-else statement

inside another if or else-if statement.

Switch Statement:

In Java, Switch statements are similar to if-else-if statements. The switch

statement contains multiple blocks of code called cases and a single case is

executed based on the variable which is being switched.

Loop Statements

In programming, sometimes we need to execute the block of code repeatedly

while some condition evaluates to true. However, loop statements are used

to execute the set of instructions in a repeated order.

1. for loop

2. while loop

3. do-while loop

Java for loop

In Java, for loop is similar to C and C++. It enables us to initialize the loop

variable, check the condition, and increment/decrement in a single line of

code. We use the for loop only when we exactly know the number of times,

we want to execute the block of code.

Java for-each loop

Java provides an enhanced for loop to traverse the data structures like array

or collection. In the for-each loop, we don't need to update the loop variable.

The syntax to use the for-each loop in java is given below.

for(data_type var : array_name/collection_name){

//statements

11 | P a g e

}

Java while loop

The while loop is also used to iterate over the number of statements multiple

times. However, if we don't know the number of iterations in advance, it is

recommended to use a while loop.

Java do-while loop

The do-while loop checks the condition at the end of the loop after executing

the loop statements. When the number of iteration is not known and we have

to execute the loop at least once, we can use do-while loop.

It is also known as the exit-controlled loop since the condition is not checked

in advance. The syntax of the do-while loop is given below.

do

{

//statements

} while (condition);

 Jump Statements

Jump statements are used to transfer the control of the program to the specific

statements. In other words, jump statements transfer the execution control to

the other part of the program.

Java break statement

As the name suggests, the break statement is used to break the current flow

of the program and transfer the control to the next statement outside a loop

or switch statement.

Java continue statement

Unlike break statement, the continue statement doesn't break the loop,

whereas, it skips the specific part of the loop and jumps to the next iteration

of the loop immediately.

12 | P a g e

Java Object Class

Java OOPs Concepts

Object-Oriented Programming is a paradigm that provides many concepts,

such as inheritance, data binding, polymorphism, etc.

Object

Any entity that has state and behaviour is known as an object. For

example, a chair, pen, table, keyboard, bike, etc. It can be physical or

logical.

 Class

 Collection of objects is called class. It is a logical entity.

 Inheritance

 When one object acquires all the properties and behaviours of a parent

object, it is known as inheritance. It provides code reusability.

 Polymorphism

If one task is performed in different ways, it is known as polymorphism. For

example: to convince the customer differently, to draw something, for

example, shape, triangle, rectangle, etc.

Abstraction

Hiding internal details and showing functionality is known as abstraction.

For example phone call, we don't know the internal processing.

Encapsulation

Binding (or wrapping) code and data together into a single unit are known as

encapsulation. For example, a capsule, it is wrapped with different

medicines.

13 | P a g e

Coupling

Coupling refers to the knowledge or information or dependency of another

class. It arises when classes are aware of each other.

Cohesion

Cohesion refers to the level of a component which performs a single well-

defined task. A single well-defined task is done by a highly cohesive

method.

Association

Association represents the relationship between the objects. Here, one object

can be associated with one object or many objects.

Aggregation

Aggregation is a way to achieve Association. Aggregation represents the

relationship where one object contains other objects as a part of its state.

Composition

The composition is also a way to achieve Association. The composition

represents the relationship where one object contains other objects as a part

of its state.

Constructors in Java

In Java, a constructor is a block of codes similar to the method. It is called

when an instance of the class is created. At the time of calling constructor,

memory for the object is allocated in the memory.

Constructor Overloading in Java

Constructor overloading in Java is a technique of having more than one

constructor with different parameter lists.

14 | P a g e

Singleton design pattern in Java

Singleton Pattern says that just "define a class that has only one instance

and provides a global point of access to it".

In other words, a class must ensure that only single instance should be created

and single object can be used by all other classes.

There are two forms of singleton design pattern

o Early Instantiation: creation of instance at load time.

o Lazy Instantiation: creation of instance when required.

Advantage of Singleton design pattern

o Saves memory because object is not created at each request. Only

single instance is reused again and again.

Private Constructor in Java

Java allows us to declare a constructor as private. We can declare a

constructor private by using the private access specifier. Note that if a

constructor is declared private, we are not able to create an object of the class.

Instead, we can use this private constructor in Singleton Design Pattern.

Rules for Private Constructor

The following rules keep in mind while dealing with private constructors.

o It does not allow a class to be sub-classed.

o It does not allow to create an object outside the class.

o If a class has a private constructor and when we try to extend the class,

a compile-time error occurs.

o We cannot access a private constructor from any other class.

o If all the constant methods are there in our class, we can use a private

constructor.

15 | P a g e

Use Cases of Private Constructor

The main purpose of using a private constructor is to restrict object

creation. We also use private constructors to implement the singleton design

pattern. The use-cases of the private constructor are as follows:

o It can be used with static members-only classes.

o It can be used with static utility or constant classes.

o It can also be used to create singleton classes.

o It can be used to assign a name, for instance, creation by utilizing

factory methods.

o It is also used to avoid sub-classing.

Different b/w Constructor and Method

Java static keyword

The static keyword in Java is used for memory management mainly. We

can apply static keyword with variables, methods, blocks and nested

16 | P a g e

classes. The static keyword belongs to the class than an instance of the

class.

1) Java static variable

If you declare any variable as static, it is known as a static variable.

o The static variable can be used to refer to the common property of all

objects (which is not unique for each object), for example, the company

name of employees, college name of students, etc.

o The static variable gets memory only once in the class area at the time

of class loading.

2) Java static method

If you apply static keyword with any method, it is known as static method.

o A static method belongs to the class rather than the object of a class.

o A static method can be invoked without the need for creating an

instance of a class.

o A static method can access static data member and can change the value

of it.

Q) Why is the Java main method static?

Ans) It is because the object is not required to call a static method. If it were

a non-static method, JVM creates an object first then call main() method that

will lead the problem of extra memory allocation.

3) Java static block

o Is used to initialize the static data member.

o It is executed before the main method at the time of classloading.

17 | P a g e

Q) Can we execute a program without main() method?

Ans) No, one of the ways was the static block, but it was possible till JDK

1.6. Since JDK 1.7, it is not possible to execute a Java class without the main

method.

this keyword in Java

There can be a lot of usage of Java this keyword. In Java, this is

a reference variable that refers to the current object.

Java Inheritance

Inheritance in Java

Inheritance in Java is a mechanism in which one object acquires all the

properties and behaviours of a parent object.

Inheritance represents the IS-A relationship which is also known as

a parent-child relationship.

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can be achieved).

18 | P a g e

o For Code Reusability.

Types of inheritance in java
On the basis of class, there can be three types of inheritance in java:

single, multilevel and hierarchical.

1) Single Inheritance

When a class inherits another class, it is known as a single inheritance.

 2)Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance.

 3)Hierarchical Inheritance Example

When two or more classes inherits a single class, it is known as hierarchical

inheritance.

Q) Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is

not supported in java.

Aggregation in Java

If a class have an entity reference, it is known as Aggregation. Aggregation

represents HAS-A relationship.

Method Overloading in Java

If a class has multiple methods having same name but different in

parameters, it is known as Method Overloading.

If we have to perform only one operation, having same name of the methods

increases the readability of the program.

19 | P a g e

Q) Why Method Overloading is not possible by changing the

return type of method only?

In java, method overloading is not possible by changing the return type of

the method only because of ambiguity.

Q) Can we overload java main() method?

Yes, by method overloading. You can have any number of main methods in

a class by method overloading. But JVM calls main() method which receives

string array as arguments only.

Java Polymorphism

Method Overriding in Java

If subclass (child class) has the same method as declared in the parent class,

it is known as method overriding in Java.

In other words, If a subclass provides the specific implementation of the

method that has been declared by one of its parent class, it is known as

method overriding.

20 | P a g e

Covariant Return Type

The covariant return type specifies that the return type may vary in the same

direction as the subclass.

Super Keyword in Java

The super keyword in Java is a reference variable which is used to refer

immediate parent class object.

Instance initializer block

Instance Initializer block is used to initialize the instance data member. It

run each time when object of the class is created.

Final Keyword in Java

The final keyword in java is used to restrict the user. The java final keyword

can be used in many context. Final can be:

1. variable

2. method

21 | P a g e

3. class

1) Java final variable

If you make any variable as final, you cannot change the value of final

variable(It will be constant).

2) Java final method

If you make any method as final, you cannot override it.

3) Java final class

If you make any class as final, you cannot extend it.

Q) Is final method inherited?

Ans) Yes, final method is inherited but you cannot override it.

Q) What is blank or uninitialized final variable?

A final variable that is not initialized at the time of declaration is known as

blank final variable.

Q) Can we initialize blank final variable?

Yes, but only in constructor.

Q) What is final parameter?

If you declare any parameter as final, you cannot change the value of it.

22 | P a g e

Q) Can we declare a constructor final?

No, because constructor is never inherited.

Polymorphism in Java

Polymorphism in Java is a concept by which we can perform a single action

in different ways.

There are two types of polymorphism in Java: compile-time polymorphism

and runtime polymorphism. We can perform polymorphism in java by

method overloading and method overriding.

Runtime Polymorphism in Java

Runtime polymorphism or Dynamic Method Dispatch is a process in

which a call to an overridden method is resolved at runtime rather than

compile-time.

Upcasting

If the reference variable of Parent class refers to the object of Child class, it

is known as upcasting.

Static Binding and Dynamic Binding

Connecting a method call to the method body is known as binding.

There are two types of binding

1. Static Binding (also known as Early Binding).

2. Dynamic Binding (also known as Late Binding).

23 | P a g e

static binding

When type of the object is determined at compiled time (by the compiler), it

is known as static binding.

Dynamic binding

When type of the object is determined at run-time, it is known as dynamic

binding.

Java instanceof

The java instanceof operator is used to test whether the object is an instance

of the specified type (class or subclass or interface).

The instanceof in java is also known as type comparison operator because it

compares the instance with type. It returns either true or false.

Java Abstraction

Abstract class in Java

A class which is declared with the abstract keyword is known as an abstract

class in Java. It can have abstract and non-abstract methods (method with

the body).

24 | P a g e

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing

only functionality to the user.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)

2. Interface (100%)

Abstract Method in Java

A method which is declared as abstract and does not have implementation is

known as an abstract method.

Interface in Java

An interface in Java is a blueprint of a class. It has static constants and

abstract methods.

25 | P a g e

The interface in Java is a mechanism to achieve abstraction. There can be

only abstract methods in the Java interface, not method body. It is used to

achieve abstraction and multiple inheritance in Java.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.

o By interface, we can support the functionality of multiple inheritance.

o It can be used to achieve loose coupling.

Syntax:

interface <interface_name>{

 // declare constant fields

 // declare methods that abstract

 // by default.

}

Q) What is marker or tagged interface?

An interface which has no member is known as a marker or tagged interface,

for example, Serializable, Cloneable, Remote, etc. They are used to provide

some essential information to the JVM so that JVM may perform some useful

operation.

Difference between abstract class and interface

Abstract class Interface

1) Abstract class can have abstract and

non-abstract methods.

Interface can have only abstract methods.

Since Java 8, it can have default and static

methods also.

2) Abstract class doesn't support

multiple inheritance.

Interface supports multiple inheritance.

26 | P a g e

3) Abstract class can have final, non-

final, static and non-static variables.

Interface has only static and final variables.

4) Abstract class can provide the

implementation of interface.

Interface can't provide the implementation

of abstract class.

5) The abstract keyword is used to

declare abstract class.

The interface keyword is used to declare

interface.

6) An abstract class can extend another

Java class and implement multiple Java

interfaces.

An interface can extend another Java interface

only.

7) An abstract class can be extended

using keyword "extends".

An interface can be implemented using

keyword "implements".

8) A Java abstract class can have class

members like private, protected, etc.

Members of a Java interface are public by

default.

9)Example:

public abstract class Shape{

public abstract void draw();

}

Example:

public interface Drawable{

void draw();

}

Simply, abstract class achieves partial abstraction (0 to 100%) whereas interface

achieves fully abstraction (100%).

Java Encapsulation

Java Package

A java package is a group of similar types of classes, interfaces and sub-

packages.

Package in java can be categorized in two form, built-in package and user-

defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net,

io, util, SQL etc.

27 | P a g e

Sub package in java

Package inside the package is called the sub package. It should be created to

categorize the package further.

Access Modifiers in Java

There are two types of modifiers in Java: access modifiers and non-access

modifiers.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class.

It cannot be accessed from outside the class.

2. Default: The access level of a default modifier is only within the

package. It cannot be accessed from outside the package. If you do not

specify any access level, it will be the default.

3. Protected: The access level of a protected modifier is within the

package and outside the package through child class. If you do not

make the child class, it cannot be accessed from outside the package.

4. Public: The access level of a public modifier is everywhere. It can be

accessed from within the class, outside the class, within the package

and outside the package.

Access

Modifier

within

class

within outside package
 by subclass only

package

outside

package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Encapsulation in Java

28 | P a g e

Encapsulation in Java is a process of wrapping code and data together

into a single unit, for example, a capsule which is mixed of several

medicines.

Advantage of Encapsulation in Java

By providing only a setter or getter method, you can make the class read-

only or write-only. In other words, you can skip the getter or setter methods.

It provides you the control over the data. Suppose you want to set the value

of id which should be greater than 100 only, you can write the logic inside

the setter method.

It is a way to achieve data hiding in Java because other class will not be

able to access the data through the private data members.

Java Array

Java Arrays

Java array is an object which contains elements of a similar data type.

Additionally, The elements of an array are stored in a contiguous memory

location. It is a data structure where we store similar elements. We can store

only a fixed set of elements in a Java array.

Array in Java is index-based, the first element of the array is stored at the 0th

index, 2nd element is stored on 1st index and so on.

Advantages
o Code Optimization: It makes the code optimized, we can retrieve or

sort the data efficiently.

o Random access: We can get any data located at an index position.

Disadvantages
o Size Limit: We can store only the fixed size of elements in the array.

It doesn't grow its size at runtime. To solve this problem, collection

framework is used in Java which grows automatically.

29 | P a g e

Types of Array in java

There are two types of array.

o Single Dimensional Array

o Multidimensional Array

Java OOPs Misc.

Object class in Java

The Object class is the parent class of all the classes in java by default. In

other words, it is the topmost class of java.

The Object class is beneficial if you want to refer any object whose type you

don't know. Notice that parent class reference variable can refer the child

class object, know as upcasting.

1. Object obj=getObject();//we don't know what object will be returned from t

his method

Object Cloning in Java

The object cloning is a way to create exact copy of an object. The clone()

method of Object class is used to clone an object.

The java.lang.Cloneable interface must be implemented by the class whose

object clone we want to create. If we don't implement Cloneable interface,

clone() method generates CloneNotSupportedException.

Why use clone() method ?

The clone() method saves the extra processing task for creating the exact

copy of an object. If we perform it by using the new keyword, it will take a

lot of processing time to be performed that is why we use object cloning.

30 | P a g e

Advantage of Object cloning
o You don't need to write lengthy and repetitive codes. Just use an

abstract class with a 4- or 5-line long clone() method.

o It is the easiest and most efficient way for copying objects, especially

if we are applying it to an already developed or an old project.

o Clone() is the fastest way to copy array.

Disadvantage of Object cloning
o To use the Object.clone() method, we have to change a lot of syntaxes

to our code, like implementing a Cloneable interface, defining the

clone() method and handling CloneNotSupportedException, and

finally, calling Object.clone() etc.

o We have to implement cloneable interface while it doesn't have any

methods in it.

Java Math class

Java Math class provides several methods to work on math calculations like

min(), max(), avg(), sin(), cos(), tan(), round(), ceil(), floor(), abs() etc.

Unlike some of the Strict Math class numeric methods, all implementations

of the equivalent function of Math class can't define to return the bit-for-bit

same results.

Wrapper classes in Java

The wrapper class in Java provides the mechanism to convert primitive

into object and object into primitive.

Since J2SE 5.0, autoboxing and unboxing feature convert primitives into

objects and objects into primitives automatically. The automatic conversion

of primitive into an object is known as autoboxing and vice-versa unboxing.

Autoboxing

The automatic conversion of primitive data type into its corresponding

wrapper class is known as autoboxing, for example, byte to Byte, char to

31 | P a g e

Character, int to Integer, long to Long, float to Float, boolean to Boolean,

double to Double, and short to Short.

Unboxing

The automatic conversion of wrapper type into its corresponding primitive

type is known as unboxing. It is the reverse process of autoboxing.

Java Strictfp Keyword

Java strictfp keyword ensures that you will get the same result on every

platform if you perform operations in the floating-point variable.

Difference between object and class

No. Object Class

1) Object is an instance of a class. Class is a blueprint or template from

which objects are created.

2) Object is a real world entity such as pen,

laptop, mobile, bed, keyboard, mouse, chair

etc.

Class is a group of similar objects.

3) Object is a physical entity. Class is a logical entity.

4) Object is created through new

keyword mainly e.g.

Student s1=new Student();

Class is declared using class

keyword e.g.

class Student{}

5) Object is created many times as per

requirement.

Class is declared once.

6) Object allocates memory when it is

created.

Class doesn't allocated memory

when it is created.

7) There are many ways to create object in

java such as new keyword, newInstance()

method, clone() method, factory method

and deserialization.

There is only one way to define

class in java using class keyword.

32 | P a g e

Difference between method overloading and method

overriding in java

No. Method Overloading Method Overriding

1) Method overloading is used to

increase the readability of the

program.

Method overriding is used to provide

the specific implementation of the

method that is already provided by

its super class.

2) Method overloading is

performed within class.

Method overriding occurs in two

classes that have IS-A (inheritance)

relationship.

3) In case of method

overloading, parameter must be

different.

In case of method

overriding, parameter must be same.

4) Method overloading is the

example of compile time

polymorphism.

Method overriding is the example

of run time polymorphism.

5) In java, method overloading

can't be performed by changing

return type of the method

only. Return type can be same or

different in method overloading.

But you must have to change the

parameter.

Return type must be same or

covariant in method overriding.

Java String

Java String

In Java, string is basically an object that represents sequence of char values.

An array of characters works same as Java string. For example:

33 | P a g e

char[] ch={'j','a','v','a','t','p','o','i','n','t'};

String s=new String(ch);

How to create a string object?

There are two ways to create String object:

1. By string literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

1. String s="welcome";

2) By new keyword

1. String s=new String("Welcome");//creates two objects and one reference va

riable

Immutable String in Java

A String is an unavoidable type of variable while writing any application

program. String references are used to store various attributes like

username, password, etc. In Java, String objects are immutable.

Immutable simply means unmodifiable or unchangeable.

Java String Buffer Class

Java String Buffer class is used to create mutable (modifiable) String objects.

The String Buffer class in Java is the same as String class except it is mutable

i.e. it can be changed.

Java StringBuilder Class

34 | P a g e

Java StringBuilder class is used to create mutable (modifiable) String. The

Java StringBuilder class is same as StringBuffer class except that it is non-

synchronized. It is available since JDK 1.5.

Difference between String and String Buffer

Difference between StringBuffer and StringBuilder

StringBuffer Class StringBuilder Class

StringBuffer is present in Java.

StringBuilder was introduced in

Java 5.

StringBuffer is synchronized. This

means that multiple threads cannot

call the methods of StringBuffer

simultaneously.

StringBuilder is asynchronized.

This means that multiple threads

can call the methods of

StringBuilder simultaneously.

35 | P a g e

StringBuffer Class StringBuilder Class

Due to synchronization,

StringBuffer is called a thread safe

class.

Due to its asynchronous nature,

StringBuilder is not a thread safe

class.

Due to synchronization,

StringBuffer is lot slower than

StringBuilder.

Since there is no preliminary

check for multiple threads,

StringBuilder is a lot faster than

StringBuffer.

How to create Immutable class?

There are many immutable classes like String, Boolean, Byte, Short, Integer,

Long, Float, Double etc. In short, all the wrapper classes and String class is

immutable.

Java toString() Method

If you want to represent any object as a string, toString() method comes into

existence.

The toString() method returns the String representation of the object.

If you print any object, Java compiler internally invokes the toString()

method on the object.

Advantage of Java toString() method

By overriding the toString() method of the Object class, we can return values

of the object, so we don't need to write much code.

StringTokenizer in Java

The java.util.StringTokenizer class allows you to break a String into

tokens. It is simple way to break a String. It is a legacy class of Java.

36 | P a g e

Exception Handling

Exception Handling in Java

The Exception Handling in Java is one of the powerful mechanism to

handle the runtime errors so that the normal flow of the application can be

maintained.

What is Exception in Java?

an exception is an event that disrupts the normal flow of the program. It is

an object which is thrown at runtime.

Types of Java Exceptions

There are mainly two types of exceptions: checked and unchecked. An error

is considered as the unchecked exception. However, according to Oracle,

there are three types of exceptions namely:

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between Checked and Unchecked

Exceptions
1) Checked Exception

The classes that directly inherit the Throwable class except Runtime

Exception and Error are known as checked exceptions. For example, IO

Exception, SQL Exception, etc. Checked exceptions are checked at compile-

time.

2) Unchecked Exception

The classes that inherit the Runtime Exception are known as unchecked

exceptions. For example, Arithmetic Exception, NullPointerException,

37 | P a g e

ArrayIndexOutOfBoundsException, etc. Unchecked exceptions are not

checked at compile-time, but they are checked at runtime.

3) Error

Error is irrecoverable. Some example of errors are OutOfMemoryError,

VirtualMachineError, AssertionError etc.

Java try-catch block

Java try block

Java try block is used to enclose the code that might throw an exception. It

must be used within the method.

Syntax of Java try-catch

try{

//code that may throw an exception

}catch(Exception_class_Name ref){}

Java catch block

Java catch block is used to handle the Exception by declaring the type of

exception within the parameter.

The catch block must be used after the try block only. You can use multiple

catch block with a single try block.

Java Catch Multiple Exceptions

Java Multi-catch block

A try block can be followed by one or more catch blocks. Each catch block

must contain a different exception handler. So, if you have to perform

different tasks at the occurrence of different exceptions, use java multi-catch

block.

Java Nested try block

38 | P a g e

In Java, using a try block inside another try block is permitted. It is called as

nested try block.

Why use nested try block

Sometimes a situation may arise where a part of a block may cause one error

and the entire block itself may cause another error. In such cases, exception

handlers have to be nested.

Java finally block

Java finally block is a block used to execute important code such as closing

the connection, etc.

Java finally block is always executed whether an exception is handled or not.

Why use Java finally block?

o finally block in Java can be used to put "cleanup" code such as closing

a file, closing connection, etc.

o The important statements to be printed can be placed in the finally

block.

Usage of Java finally

Let's see the different cases where Java finally block can be used.

Java throw keyword

The Java throw keyword is used to throw an exception explicitly.

We can throw either checked or unchecked exceptions in Java by throw

keyword. It is mainly used to throw a custom exception.

Java Exception Propagation

Exception propagation in Java occurs when an exception thrown from

the top of the stack.

39 | P a g e

Java throws keyword

The Java throws keyword is used to declare an exception. It gives an

information to the programmer that there may occur an exception.

Syntax of Java throws

return_type method_name() throws exception_class_name{

//method code

}

Difference between throw and throws in Java

40 | P a g e

Difference between final, finally and finalize

Java Custom Exception

Creating our own Exception is known as custom exception or user-defined

exception. Basically, Java custom exceptions are used to customize the

exception according to user need.

Why use custom exceptions?

Java exceptions cover almost all the general type of exceptions that may

occur in the programming.

However, we sometimes need to create custom exceptions.

41 | P a g e

Java Multithreading

Multithreading in Java

Multithreading in Java is a process of executing multiple threads

simultaneously.

A thread is a lightweight sub-process, the smallest unit of processing.

Multiprocessing and multithreading, both are used to achieve multitasking.

Multitasking

Multitasking is a process of executing multiple tasks simultaneously. We use

multitasking to utilize the CPU. Multitasking can be achieved in two ways:

o Process-based Multitasking (Multiprocessing)

o Thread-based Multitasking (Multithreading)

1) Process-based Multitasking (Multiprocessing)

o Each process has an address in memory. In other words, each process

allocates a separate memory area.

o A process is heavyweight.

o Cost of communication between the process is high.

2) Thread-based Multitasking (Multithreading)

o Threads share the same address space.

o A thread is lightweight.

o Cost of communication between the thread is low.

What is Thread in java

A thread is a lightweight subprocess, the smallest unit of processing. It is a

separate path of execution.

42 | P a g e

Threads are independent. If there occurs exception in one thread, it doesn't

affect other threads. It uses a shared memory area.

Life cycle of a Thread (Thread States)

In Java, a thread always exists in any one of the following states. These states

are:

1. New

2. Active

3. Blocked / Waiting

4. Timed Waiting

5. Terminated

Explanation of Different Thread States

New: Whenever a new thread is created, it is always in the new state.

Active: When a thread invokes the start() method, it moves from the new

state to the active state. The active state contains two states within it: one

is runnable, and the other is running.

Runnable: A thread, that is ready to run is then moved to the runnable

state. In the runnable state, the thread may be running or may be ready to

run at any given instant of time.

Running: When the thread gets the CPU, it moves from the runnable to the

running state.

Blocked or Waiting: Whenever a thread is inactive for a span of time (not

permanently) then, either the thread is in the blocked state or is in the

waiting state.

Terminated: A thread reaches the termination state because of the following

reasons:

o When a thread has finished its job, then it exists or terminates normally.

43 | P a g e

o Abnormal termination: It occurs when some unusual events such as

an unhandled exception or segmentation fault.

Java Threads | How to create a thread in Java

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Thread class:

Thread class provide constructors and methods to create and perform

operations on a thread.Thread class extends Object class and implements

Runnable interface.

Commonly used Constructors of Thread class:

o Thread()

o Thread(String name)

o Thread(Runnable r)

o Thread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the thread.JVM calls the

run() method on the thread.

3. public void sleep(long miliseconds): Causes the currently executing

thread to sleep (temporarily cease execution) for the specified number

of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the

specified miliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

44 | P a g e

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

10. public Thread currentThread(): returns the reference of

currently executing thread.

11. public int getId(): returns the id of the thread.

12. public Thread.State getState(): returns the state of the thread.

13. public boolean isAlive(): tests if the thread is alive.

14. public void yield(): causes the currently executing thread object

to temporarily pause and allow other threads to execute.

15. public void suspend(): is used to suspend the thread(depricated).

16. public void resume(): is used to resume the suspended

thread(depricated).

17. public void stop(): is used to stop the thread(depricated).

18. public boolean isDaemon(): tests if the thread is a daemon

thread.

19. public void setDaemon(boolean b): marks the thread as daemon

or user thread.

20. public void interrupt(): interrupts the thread.

21. public boolean isInterrupted(): tests if the thread has been

interrupted.

22. public static boolean interrupted(): tests if the current thread

has been interrupted.

Runnable interface:

The Runnable interface should be implemented by any class whose instances

are intended to be executed by a thread. Runnable interface have only one

method named run().

1. public void run(): is used to perform action for a thread.

Starting a thread:

The start() method of Thread class is used to start a newly created thread. It

performs the following tasks:

45 | P a g e

o A new thread starts(with new callstack).

o The thread moves from New state to the Runnable state.

o When the thread gets a chance to execute, its target run() method will

run.

Thread Scheduler in Java

A component of Java that decides which thread to run or execute and which

thread to wait is called a thread scheduler in Java. In Java, a thread is only

chosen by a thread scheduler if it is in the runnable state. However, if there

is more than one thread in the runnable state, it is up to the thread scheduler

to pick one of the threads and ignore the other ones.

Priority: Priority of each thread lies between 1 to 10. If a thread has a higher

priority, it means that thread has got a better chance of getting picked up by

the thread scheduler.

Time of Arrival: Suppose two threads of the same priority enter the

runnable state, then priority cannot be the factor to pick a thread from these

two threads. In such a case, arrival time of thread is considered by the

thread scheduler.

Thread Scheduler Algorithms

On the basis of the above-mentioned factors, the scheduling algorithm is

followed by a Java thread scheduler.

First Come First Serve Scheduling:

In this scheduling algorithm, the scheduler picks the threads thar arrive first

in the runnable queue. Observe the following table:

Threads Time of Arrival

t1 0

t2 1

46 | P a g e

t3 2

t4 3

In the above table, we can see that Thread t1 has arrived first, then Thread

t2, then t3, and at last t4, and the order in which the threads will be processed

is according to the time of arrival of threads.

Hence, Thread t1 will be processed first, and Thread t4 will be processed last.

Time-slicing scheduling:

Usually, the First Come First Serve algorithm is non-preemptive, which is

bad as it may lead to infinite blocking (also known as starvation). To avoid

that, some time-slices are provided to the threads so that after some time, the

running thread has to give up the CPU. Thus, the other waiting threads also

get time to run their job.

47 | P a g e

In the above diagram, each thread is given a time slice of 2 seconds. Thus,

after 2 seconds, the first thread leaves the CPU, and the CPU is then captured

by Thread2. The same process repeats for the other threads too.

Preemptive-Priority Scheduling:

The name of the scheduling algorithm denotes that the algorithm is related

to the priority of the threads.

Suppose there are multiple threads available in the runnable state. The thread

scheduler picks that thread that has the highest priority.

Working of the Java Thread Scheduler

48 | P a g e

Let's understand the working of the Java thread scheduler. Suppose, there are

five threads that have different arrival times and different priorities. Now, it

is the responsibility of the thread scheduler to decide which thread will get

the CPU first.

The thread scheduler selects the thread that has the highest priority, and the

thread begins the execution of the job. If a thread is already in runnable state

and another thread (that has higher priority) reaches in the runnable state,

then the current thread is pre-empted from the processor, and the arrived

thread with higher priority gets the CPU time.

When two threads (Thread 2 and Thread 3) having the same priorities and

arrival time, the scheduling will be decided on the basis of FCFS algorithm.

Thus, the thread that arrives first gets the opportunity to execute first.

 Thread. Sleep() in Java

The Java Thread class provides the two variant of the sleep() method. First

one accepts only an arguments, whereas the other variant accepts two

arguments. The method sleep() is being used to halt the working of a thread

for a given amount of time. The time up to which the thread remains in the

sleeping state is known as the sleeping time of the thread. After the sleeping

time is over, the thread starts its execution from where it has left.

The sleep() Method Syntax:

Following are the syntax of the sleep() method.

1. public static void sleep(long mls) throws InterruptedException

2. public static void sleep(long mls, int n) throws InterruptedException

Can we start a thread twice

No. After starting a thread, it can never be started again. If you does so,

an IllegalThreadStateException is thrown. In such case, thread will run once

but for second time, it will throw exception.

49 | P a g e

What if we call Java run() method directly instead start()

method?

o Each thread starts in a separate call stack.

o Invoking the run() method from the main thread, the run() method goes onto

the current call stack rather than at the beginning of a new call stack.

Java join() method

The join() method in Java is provided by the java.lang.Thread class that

permits one thread to wait until the other thread to finish its execution.

Suppose th be the object the class Thread whose thread is doing its execution

currently, then the th.join(); statement ensures that th is finished before the

program does the execution of the next statement. When there are more than

one thread invoking the join() method, then it leads to overloading on the

join() method that permits the developer or programmer to mention the

waiting period.

Description of The Overloaded join() Method

join(): When the join() method is invoked, the current thread stops its

execution and the thread goes into the wait state. The current thread remains

in the wait state until the thread on which the join() method is invoked has

achieved its dead state.

Syntax:

1. public final void join() throws InterruptedException

Naming Thread and Current Thread

Naming Thread

The Thread class provides methods to change and get the name of a thread.

By default, each thread has a name, i.e. thread-0, thread-1 and so on. By we

can change the name of the thread by using the setName() method. The

syntax of setName() and getName() methods are given below:

50 | P a g e

1. public String getName(): is used to return the name of a thread.

2. public void setName(String name): is used to change the name of a th

read.

Current Thread

The currentThread() method returns a reference of the currently executing

thread.

public static Thread currentThread();

Priority of a Thread (Thread Priority)

Each thread has a priority. Priorities are represented by a number between 1

and 10. In most cases, the thread scheduler schedules the threads according

to their priority (known as preemptive scheduling). But it is not guaranteed

because it depends on JVM specification that which scheduling it chooses.

Setter & Getter Method of Thread Priority

public final int getPriority(): The java.lang.Thread.getPriority() method

returns the priority of the given thread.

public final void setPriority(int newPriority): The

java.lang.Thread.setPriority() method updates or assign the priority of the

thread to newPriority. The method throws IllegalArgumentException if the

value newPriority goes out of the range, which is 1 (minimum) to 10

(maximum).

3 constants defined in Thread class:
1. public static int MIN_PRIORITY

2. public static int NORM_PRIORITY

3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of

MIN_PRIORITY is 1 and the value of MAX_PRIORITY is 10.

51 | P a g e

Daemon Thread in Java

Daemon thread in Java is a service provider thread that provides services

to the user thread. Its life depend on the mercy of user threads i.e. when all

the user threads dies, JVM terminates this thread automatically.

There are many java daemon threads running automatically e.g. gc, finalizer

etc.

Points to remember for Daemon Thread in Java

o It provides services to user threads for background supporting tasks. It

has no role in life than to serve user threads.

o Its life depends on user threads.

o It is a low priority thread.

Why JVM terminates the daemon thread if there is no user thread?

The sole purpose of the daemon thread is that it provides services to user

thread for background supporting task. If there is no user thread, why should

JVM keep running this thread. That is why JVM terminates the daemon

thread if there is no user thread.

Java Thread Pool

Java Thread pool represents a group of worker threads that are waiting for

the job and reused many times. A thread pool reuses previously created

threads to execute current tasks

In the case of a thread pool, a group of fixed-size threads is created. A thread

from the thread pool is pulled out and assigned a job by the service provider.

Thread Pool Methods

newFixedThreadPool(int s): The method creates a thread pool of the fixed

size s.

52 | P a g e

newCachedThreadPool(): The method creates a new thread pool that

creates the new threads when needed but will still use the previously created

thread whenever they are available to use.

newSingleThreadExecutor(): The method creates a new thread.

Advantage of Java Thread Pool

Better performance It saves time because there is no need to create a new

thread.

Real time usage

It is used in Servlet and JSP where the container creates a thread pool to

process the request.

ThreadGroup in Java

Java provides a convenient way to group multiple threads in a single object.

In such a way, we can suspend, resume or interrupt a group of threads by a

single method call.

Java thread group is implemented by java.lang.ThreadGroup class.

A ThreadGroup represents a set of threads. A thread group can also include

the other thread group. The thread group creates a tree in which every thread

group except the initial thread group has a parent.

A thread is allowed to access information about its own thread group, but it

cannot access the information about its thread group's parent thread group or

any other thread groups.

53 | P a g e

Constructors of ThreadGroup class

There are only two constructors of ThreadGroup class.

Java Shutdown Hook

A special construct that facilitates the developers to add some code that has

to be run when the Java Virtual Machine (JVM) is shutting down is known

as the Java shutdown hook. The Java shutdown hook comes in very handy

in the cases where one needs to perform some special cleanup work when the

JVM is shutting down.

When does the JVM shut down?

The JVM shuts down when:

o user presses ctrl+c on the command prompt

o System.exit(int) method is invoked

o user logoff

o user shutdown etc.

No. Constructor Description

1) ThreadGroup (String name) creates a thread

group with given

name.

2) ThreadGroup(ThreadGroup

parent, String name)

creates a thread

group with a given

parent group and

name.

54 | P a g e

The addShutdownHook (Thread hook) method

The addShutdownHook () method of the Runtime class is used to register the

thread with the Virtual Machine.

Syntax:

1. public void addShutdownHook(Thread hook){}

How to perform single task by multiple threads in

Java?

If you have to perform a single task by many threads, have only one run()

method.

How to perform multiple tasks by multiple threads

(multitasking in multithreading)?

If you have to perform multiple tasks by multiple threads , have multiple

run() methods.

Java Garbage Collection

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory

automatically. In other words, it is a way to destroy the unused objects.

Advantage of Garbage Collection
o It makes java memory efficient because garbage collector removes the

unreferenced objects from heap memory.

o It is automatically done by the garbage collector(a part of JVM) so we

don't need to make extra efforts.

55 | P a g e

How can an object be unreferenced?

There are many ways:

o By nulling the reference

o By assigning a reference to another

o By anonymous object etc.

1) By nulling a reference:

1. Employee e=new Employee();

2. e=null;

2) By assigning a reference to another:

1. Employee e1=new Employee();

2. Employee e2=new Employee();

3. e1=e2;//now the first object referred by e1 is available for garbage col

lection

3) By anonymous object:

1. new Employee();

finalize() method

The finalize() method is invoked each time before the object is garbage

collected. This method can be used to perform cleanup processing. This

method is defined in Object class as:

1. protected void finalize(){}

gc() method

The gc() method is used to invoke the garbage collector to perform cleanup

processing. The gc() is found in System and Runtime classes.

1. public static void gc(){}

56 | P a g e

Java Runtime class

Java Runtime class is used to interact with java runtime environment. Java

Runtime class provides methods to execute a process, invoke GC, get total

and free memory etc. There is only one instance of java.lang.Runtime class

is available for one java application.

Important methods of Java Runtime class

No. Method Description

1) public static Runtime getRuntime() returns the instance of

Runtime class.

2) public void exit(int status) terminates the current

virtual machine.

3) public void addShutdownHook(Thread

hook)

registers new hook thread.

4) public Process exec(String

command)throws IOException

executes given command

in a separate process.

5) public int availableProcessors() returns no. of available

processors.

6) public long freeMemory() returns amount of free

memory in JVM.

7) public long totalMemory() returns amount of total

memory in JVM.

57 | P a g e

Java Collections

Collections in Java

The Collection in Java is a framework that provides an architecture to store

and manipulate the group of objects.

Java Collections can achieve all the operations that you perform on a data

such as searching, sorting, insertion, manipulation, and deletion.

Java Collection means a single unit of objects. Java Collection framework

provides many interfaces (Set, List, Queue, Deque) and classes (ArrayList,

Vector, LinkedList, PriorityQueue, HashSet, LinkedHashSet, TreeSet).

What is Collection in Java

A Collection represents a single unit of objects, i.e., a group.

What is a framework in Java

o It provides readymade architecture.

o It represents a set of classes and interfaces.

o It is optional.

What is Collection framework

The Collection framework represents a unified architecture for storing and

manipulating a group of objects. It has:

1. Interfaces and its implementations, i.e., classes

2. Algorithm

1) Java ArrayList

Java ArrayList class uses a dynamic array for storing the

elements. It is like an array, but there is no size limit. We can add

or remove elements anytime. So, it is much more flexible than the

58 | P a g e

traditional array. It is found in the java.util package. It is like the

Vector in C++.

o We can not create an array list of the primitive types, such as int,

float, char, etc. It is required to use the required wrapper class in

such cases. For example:

1. ArrayList<int> al = ArrayList<int>(); // does not work

2. ArrayList<Integer> al = new ArrayList<Integer>(); // works fine

ArrayList class declaration

Let's see the declaration for java.util.ArrayList class.

1. public class ArrayList<E> extends AbstractList<E> implements List

<E>, RandomAccess, Cloneable, Ser

Java Non-generic Vs. Generic Collection

Java collection framework was non-generic before JDK 1.5. Since 1.5, it is

generic.

Java new generic collection allows you to have only one type of object in a

collection. Now it is type-safe, so typecasting is not required at runtime.

Let's see the old non-generic example of creating a Java collection.

1. ArrayList list=new ArrayList();//creating old non-generic arraylist

Let's see the new generic example of creating java collection.

1. ArrayList<String> list=new ArrayList<String>();//creating new gener

ic arraylist

59 | P a g e

2) Java LinkedList class

Java LinkedList class uses a doubly linked list to store the elements. It

provides a linked-list data structure. It inherits the Abstract List class and

implements List and Deque interfaces.

The important points about Java LinkedList are:

o Java LinkedList class can contain duplicate elements.

o Java LinkedList class maintains insertion order.

o Java LinkedList class is non synchronized.

o In Java LinkedList class, manipulation is fast because no shifting needs

to occur.

o Java LinkedList class can be used as a list, stack or queue.

Hierarchy of LinkedList class

As shown in the above diagram, Java LinkedList class extends

AbstractSequentialList class and implements List and Deque interfaces.

60 | P a g e

Doubly Linked List

In the case of a doubly linked list, we can add or remove elements from both

sides.

LinkedList class declaration

Let's see the declaration for java.util.LinkedList class.

1. public class LinkedList<E> extends AbstractSequentialList<E> impl

ements List<E>, Deque<E>, Clonea

Difference Between ArrayList and LinkedList

ArrayList LinkedList

1) ArrayList internally uses

a dynamic array to store the

elements.

LinkedList internally uses

a doubly linked list to store the

elements.

2) Manipulation with ArrayList

is slow because it internally uses an

array. If any element is removed

from the array, all the other

elements are shifted in memory.

Manipulation with LinkedList

is faster than ArrayList because

it uses a doubly linked list, so no

bit shifting is required in memory.

3) An ArrayList class can act as a

list only because it implements List

only.

LinkedList class can act as a list

and queue both because it

implements List and Deque

interfaces.

4) ArrayList is better for storing

and accessing data.

LinkedList is better for

manipulating data.

61 | P a g e

5) The memory location for the

elements of an ArrayList is

contiguous.

The location for the elements of a

linked list is not contagious.

6) Generally, when an ArrayList is

initialized, a default capacity of 10

is assigned to the ArrayList.

There is no case of default

capacity in a LinkedList. In

LinkedList, an empty list is

created when a LinkedList is

initialized.

7) To be precise, an ArrayList is a

resizable array.

LinkedList implements the

doubly linked list of the list

interface.

Java List

List in Java provides the facility to maintain the ordered collection. It

contains the index-based methods to insert, update, delete and search the

elements. It can have the duplicate elements also. We can also store the null

elements in the list.

The List interface is found in the java.util package and inherits the Collection

interface. It is a factory of ListIterator interface. Through the ListIterator, we

can iterate the list in forward and backward directions. The implementation

classes of List interface are ArrayList, LinkedList, Stack and Vector. The

ArrayList and LinkedList are widely used in Java programming. The Vector

class is deprecated since Java 5.

Java HashSet

Java HashSet class is used to create a collection that uses a hash table for

storage. It inherits the AbstractSet class and implements Set interface.

62 | P a g e

The important points about Java HashSet class are:

o HashSet stores the elements by using a mechanism called hashing.

o HashSet contains unique elements only.

o HashSet allows null value.

o HashSet class is non synchronized.

o HashSet doesn't maintain the insertion order. Here, elements are

inserted on the basis of their hashcode.

o HashSet is the best approach for search operations.

o The initial default capacity of HashSet is 16, and the load factor is 0.75.

Java LinkedHashSet Class

63 | P a g e

Java LinkedHashSet class is a Hashtable and Linked list implementation of

the Set interface. It inherits the HashSet class and implements the Set

interface.

The important points about the Java LinkedHashSet class are:

o Java LinkedHashSet class contains unique elements only like HashSet.

o Java LinkedHashSet class provides all optional set operations and

permits null elements.

o Java LinkedHashSet class is non-synchronized.

o Java LinkedHashSet class maintains insertion order.

Java TreeMap class

Java TreeMap class is a red-black tree based implementation. It

provides an efficient means of storing key-value pairs in sorted

order.

The important points about Java TreeMap class are:

o Java TreeMap contains values based on the key. It implements

the NavigableMap interface and extends AbstractMap class.

o Java TreeMap contains only unique elements.

64 | P a g e

o Java TreeMap cannot have a null key but can have multiple null

values.

o Java TreeMap is non synchronized.

o Java TreeMap maintains ascending order.

Java TreeSet class

Java TreeSet class implements the Set interface that uses a tree for storage.

It inherits AbstractSet class and implements the NavigableSet interface.

The objects of the TreeSet class are stored in ascending order.

The important points about the Java TreeSet class are:

o Java TreeSet class contains unique elements only like HashSet.

o Java TreeSet class access and retrieval times are quiet fast.

o Java TreeSet class doesn't allow null element.

o Java TreeSet class is non synchronized.

o Java TreeSet class maintains ascending order.

Backward Ski

p 10s

65 | P a g e

Java Queue Interface

The interface Queue is available in the java.util package and does extend the

Collection interface. It is used to keep the elements that are processed in the

First In First Out (FIFO) manner. It is an ordered list of objects, where

insertion of elements occurs at the end of the list, and removal of elements

occur at the beginning of the list.

Being an interface, the queue requires, for the declaration, a concrete class,

and the most common classes are the LinkedList and PriorityQueue in Java.

Implementations done by these classes are not thread safe. If it is required to

have a thread safe implementation, PriorityBlockingQueue is an available

option.

Features of a Queue

The following are some important features of a queue.

o As discussed earlier, FIFO concept is used for insertion and deletion of

elements from a queue.

o The Java Queue provides support for all of the methods of the

Collection interface including deletion, insertion, etc.

o PriorityQueue, ArrayBlockingQueue and LinkedList are the

implementations that are used most frequently.

o The NullPointerException is raised, if any null operation is done on the

BlockingQueues.

o Those Queues that are present in the util package are known as

Unbounded Queues.

o Those Queues that are present in the util.concurrent package are

known as bounded Queues.

o All Queues barring the Deques facilitates removal and insertion at the

head and tail of the queue; respectively. In fact, deques support element

insertion and removal at both ends.

66 | P a g e

PriorityQueue Class

PriorityQueue is also class that is defined in the collection framework that

gives us a way for processing the objects on the basis of priority. It is already

described that the insertion and deletion of objects follows FIFO pattern in

the Java queue. However, sometimes the elements of the queue are needed

to be processed according to the priority, that's where a PriorityQueue comes

into action.

Java Deque Interface

The interface called Deque is present in java.util package. It is the subtype

of the interface queue. The Deque supports the addition as well as the

removal of elements from both ends of the data structure. Therefore, a deque

can be used as a stack or a queue. We know that the stack supports the Last

In First Out (LIFO) operation, and the operation First In First Out is

supported by a queue. As a deque supports both, either of the mentioned

operations can be performed on it. Deque is an acronym for "double ended

queue".

Java Hashtable class

Java Hashtable class implements a hashtable, which maps keys to

values. It inherits Dictionary class and implements the Map

interface.

Points to remember

o A Hashtable is an array of a list. Each list is known as a bucket.

The position of the bucket is identified by calling the

hashcode() method. A Hashtable contains values based on the

key.

o Java Hashtable class contains unique elements.

o Java Hashtable class doesn't allow null key or value.

o Java Hashtable class is synchronized.

67 | P a g e

The initial default capacity of Hashtable class is 11 whereas

loadFactor is 0.75

Java Map Interface

A map contains values on the basis of key, i.e. key and value pair. Each key

and value pair is known as an entry. A Map contains unique keys.

A Map is useful if you have to search, update or delete elements on the basis

of a key.

Java Map Hierarchy

There are two interfaces for implementing Map in java: Map and SortedMap,

and three classes: HashMap, LinkedHashMap, and TreeMap. A Map doesn't

allow duplicate keys, but you can have duplicate values. HashMap and

LinkedHashMap allow null keys and values, but TreeMap doesn't allow any

null key or value.

A Map can't be traversed, so you need to convert it into Set

using keySet() or entrySet() method.

Java HashMap

Java HashMap class implements the Map interface which allows us to store

key and value pair, where keys should be unique. If you try to insert the

duplicate key, it will replace the element of the corresponding key. It is easy

68 | P a g e

to perform operations using the key index like updation, deletion, etc.

HashMap class is found in the java.util package.

HashMap in Java is like the legacy Hashtable class, but it is not synchronized.

It allows us to store the null elements as well, but there should be only one

null key. Since Java 5, it is denoted as HashMap<K,V>, where K stands for

key and V for value. It inherits the AbstractMap class and implements the

Map interface.

Points to remember

o Java HashMap contains values based on the key.

o Java HashMap contains only unique keys.

o Java HashMap may have one null key and multiple null values.

o Java HashMap is non synchronized.

o Java HashMap maintains no order.

o The initial default capacity of Java HashMap class is 16 with a load

factor of 0.75.

Java EnumSet class

Java EnumSet class is the specialized Set implementation for use

with enum types. It inherits AbstractSet class and implements the

Set interface.

EnumSet class declaration

Let's see the declaration for java.util.EnumSet class.

1. public abstract class EnumSet<E extends Enum<E>> exten

ds AbstractSet<E> implements Cloneable, Serializable

69 | P a g e

Difference between HashMap and Hashtable

HashMap and Hashtable both are used to store data in key and value

form. Both are using hashing technique to store unique keys.

HashMap Hashtable

1) HashMap is non

synchronized. It is not-thread

safe and can't be shared

between many threads without

proper synchronization code.

Hashtable is synchronized. It is

thread-safe and can be shared with

many threads.

2) HashMap allows one null

key and multiple null values.

Hashtable doesn't allow any null

key or value.

3) HashMap is a new class

introduced in JDK 1.2.

Hashtable is a legacy class.

4) HashMap is fast. Hashtable is slow.

5) We can make the HashMap

as synchronized by calling this

code

Map m =

Collections.synchronizedMap(

hashMap);

Hashtable is internally synchronized

and can't be unsynchronized.

6) HashMap is traversed by

Iterator.

Hashtable is traversed by

Enumerator and Iterator.

7) Iterator in HashMap is fail-

fast.

Enumerator in Hashtable is not fail-

fast.

8) HashMap

inherits AbstractMap class.

Hashtable inherits Dictionary class.

70 | P a g e

Java LinkedHashMap class

Java LinkedHashMap class is Hashtable and Linked list

implementation of the Map interface, with predictable iteration

order. It inherits HashMap class and implements the Map interface.

Points to remember

o Java LinkedHashMap contains values based on the key.

o Java LinkedHashMap contains unique elements.

o Java LinkedHashMap may have one null key and multiple null

values.

o Java LinkedHashMap is non synchronized.

o Java LinkedHashMap maintains insertion order.

o The initial default capacity of Java HashMap class is 16 with a

load factor of 0.75.

71 | P a g e

Java Collections class

Java collection class is used exclusively with static methods that

operate on or return collections. It inherits Object class.

The important points about Java Collections class are:

o Java Collection class supports the polymorphic

algorithms that operate on collections.

o Java Collection class throws a NullPointerException if the

collections or class objects provided to them are null.

Difference between Comparable and

Comparator

o Comparable and Comparator both are interfaces and can be used to sort

collection elements.

o However, there are many differences between Comparable and

Comparator interfaces that are given below.

Comparable Comparator

1) Comparable provides a single sorting

sequence. In other words, we can sort the

collection on the basis of a single element

such as id, name, and price.

The Comparator

provides multiple sorting

sequences. In other words, we

can sort the collection on the

basis of multiple elements such

as id, name, and price etc.

2) Comparable affects the original class,

i.e., the actual class is modified.

Comparator doesn't affect the

original class, i.e., the actual

class is not modified.

72 | P a g e

3) Comparable provides compareTo()

method to sort elements.

Comparator provides compare()

method to sort elements.

4) Comparable is present

in java.lang package.

A Comparator is present in

the java.util package.

5) We can sort the list elements of

Comparable type

by Collections.sort(List) method.

We can sort the list elements of

Comparator type

by Collections.sort(List,

Comparator) method.

Difference between ArrayList and Vector

73 | P a g e

Java Vector

Vector is like the dynamic array which can grow or shrink its size.

Unlike array, we can store n-number of elements in it as there is no

size limit. It is a part of Java Collection framework since Java 1.2. It

is found in the java.util package and implements the List interface,

so we can use all the methods of List interface here.

It is recommended to use the Vector class in the thread-safe

implementation only. If you don't need to use the thread-safe

implementation, you should use the ArrayList, the ArrayList will

perform better in such case.

The Iterators returned by the Vector class are fail-fast. In case of

concurrent modification, it fails and throws the

ConcurrentModificationException.

Java Stack

The stack is a linear data structure that is used to store the collection

of objects. It is based on Last-In-First-Out (LIFO). Java

collection framework provides many interfaces and classes to store

the collection of objects. One of them is the Stack class that

provides different operations such as push, pop, search, etc.

In this section, we will discuss the Java Stack class,

its methods, and implement the stack data structure in a Java

program. But before moving to the Java Stack class have a quick

view of how the stack works.

The stack data structure has the two most important operations that

are push and pop. The push operation inserts an element into the

stack and pop operation removes an element from the top of the

stack. Let's see how they work on stack.

74 | P a g e

Java JDBC

JDBC stands for Java Database Connectivity. JDBC is a Java API to connect

and execute the query with the database. It is a part of JavaSE (Java Standard

Edition). JDBC API uses JDBC drivers to connect with the database. There

are four types of JDBC drivers:

o JDBC-ODBC Bridge Driver,

o Native Driver,

o Network Protocol Driver, and

o Thin Driver

The java.sql package contains classes and interfaces for JDBC API. A list of

popular interfaces of JDBC API are given below:

o Driver interface

o Connection interface

o Statement interface

o PreparedStatement interface

o CallableStatement interface

o ResultSet interface

o ResultSetMetaData interface

o DatabaseMetaData interface

o RowSet interface

75 | P a g e

A list of popular classes of JDBC API are given below:

o DriverManager class

o Blob class

o Clob class

o Types class

Why Should We Use JDBC

Before JDBC, ODBC API was the database API to connect and execute the

query with the database. But, ODBC API uses ODBC driver which is written

in C language (i.e. platform dependent and unsecured).

Java Reflection API

Java Reflection is a process of examining or modifying the run time

behavior of a class at run time.

The java.lang.Class class provides many methods that can be used

to get metadata, examine and change the run time behavior of a

class.

The java.lang and java.lang.reflect packages provide classes for java

reflection.

JDBC Driver

JDBC Driver is a software component that enables java application to

interact with the database. There are 4 types of JDBC drivers:

1. JDBC-ODBC bridge driver

2. Native-API driver (partially java driver)

3. Network Protocol driver (fully java driver)

4. Thin driver (fully java driver)

76 | P a g e

1) JDBC-ODBC bridge driver

The JDBC-ODBC bridge driver uses ODBC driver to connect to the database.

The JDBC-ODBC bridge driver converts JDBC method calls into the ODBC

function calls.

Advantages:

o easy to use.

o can be easily connected to any database.

Disadvantages:

o Performance degraded because JDBC method call is converted into the

ODBC function calls.

o The ODBC driver needs to be installed on the client machine.

2) Native-API driver

The Native API driver uses the client-side libraries of the database. The driver

converts JDBC method calls into native calls of the database API. It is not

written entirely in java.

Advantage:

o performance upgraded than JDBC-ODBC bridge driver.

Disadvantage:

o The Native driver needs to be installed on the each client machine.

o The Vendor client library needs to be installed on client machine.

3) Network Protocol driver

The Network Protocol driver uses middleware (application server) that

converts JDBC calls directly or indirectly into the vendor-specific database

protocol. It is fully written in java.

Advantage:

o No client side library is required because of application server that can

perform many tasks like auditing, load balancing, logging etc.

77 | P a g e

Disadvantages:

o Network support is required on client machine.

o Requires database-specific coding to be done in the middle tier.

o Maintenance of Network Protocol driver becomes costly because it

requires database-specific coding to be done in the middle tier.

4) Thin driver

The thin driver converts JDBC calls directly into the vendor-specific database

protocol. That is why it is known as thin driver. It is fully written in Java

language.

Advantage:

o Better performance than all other drivers.

o No software is required at client side or server side.

Disadvantage:

o Drivers depend on the Database.

Java Database Connectivity with 5 Steps

78 | P a g e

1) Register the driver class

The forName() method of Class class is used to register the driver class. This

method is used to dynamically load the driver class.

Syntax of forName() method

1. public static void forName(String className)throws ClassNotFound

Exception

2) get connection object

The getConnection() method of DriverManager class is used to establish

connection with the database.

Syntax of getConnection() method

1. 1) public static Connection getConnection(String url)throws SQLEx

ception

2. 2) public static Connection getConnection(String url,String name,Stri

ng password)

3. throws SQLException

3) Create the Statement object

The createStatement() method of Connection interface is used to create

statement. The object of statement is responsible to execute queries with the

database.

Syntax of createStatement() method

1. public Statement createStatement()throws SQLException

4) Execute the query

The executeQuery() method of Statement interface is used to execute queries

to the database. This method returns the object of ResultSet that can be used

to get all the records of a table.

Syntax of executeQuery() method

1. public ResultSet executeQuery(String sql)throws SQLException

79 | P a g e

5) Close the connection object

By closing connection object statement and ResultSet will be closed

automatically. The close() method of Connection interface is used to close the

connection.

Syntax of close() method

1. public void close()throws SQLException

