
UNIT-I

PROGRAMMING  PERFORMANCE

Perfor m a n c e  of  a  pro gr a m :   The  perfor mance  of  a  program  is
measured  based  on  the  amount  of  comput er  memory  and  time  needed
to  run  a program.

The  two  approache s  which  are  used  to  measur e  the  performa nc e  of  the  
progra m  are:

1. Analy t i c a l  me t h o d  à called  the  Performance  Analysis.  
2. Exper i m e n t a l  me t h o d  à  called  the  Performanc e  Measure m e n t .  

SPACE  COMPLEXITY

Spac e  co m p l e x i t y :   The  Space  complexi ty  of  a  program  is  defined  as
the  amount  of  mem ory  it  needs  to  run  to  completion.

As  said  above  the  space  complexity  is  one  of  the  factor  which
account s  for  the  performa nc e  of  the  progra m.   The  space  complexity  can
be  measur e d  using  experime n t a l  method,  which  is  done  by  running  the
progra m  and  then  measur ing  the  actual  space  occupied  by  the  progra m
during  execution.   But  this  is  done  very  rarely.   We  estimate  the  space
complexity  of  the  program  before  running  the  progra m.   

Spac e  compl ex i ty  is  the  sum  of  the  followin g  comp o n e n t s :

(i) Ins t r u c t i o n  spac e:

   The  progra m  which  is  written  by  the  user  is  the  source  progra m.
When  this  progra m  is  compiled,  a  compiled  version  of  the  progra m  is
genera t e d .   For  executing  the  progra m  an  executa ble  version  of  the
progra m  is  genera t e d .   The  space  occupied  by  these  three  when  the
progra m  is  under  execution,  will  account  for  the  instruc t ion  space.

(ii) Data  spac e:

The  space  needed  by  the  constan t s ,  simple  variables ,  arrays ,
structu r e s  and  other  data  struc tu r e s  will  account  for  the  data  space.

The  Data  space  depends  on  the  following  factors:

 Structure  size  –  It  is  the  sum  of  the  size  of  compone n t
variables  of  the  structu r e .

 Array  size  – Total  size  of  the  array  is  the  product  of  the  size
of  the  data  type  and  the  numbe r  of  array  locations.
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(iii ) Enviro n m e n t  stac k  spac e:

The  Environm en t  stack  space  is  used  for  saving  information  needed
to  resume  execution  of  partially  complet ed  functions.   That  is  wheneve r
the  control  of  the  program  is  transfe r r e d  from  one  function  to  anothe r
during  a  function  call,   then  the  values  of  the  local  variable  of  that
function  and  retu rn  address  are  stored  in  the  environme n t  stack.   This
information  is  retrieved  when  the  control  comes  back  to  the  same
function.

The  environm e n t  stack  space  depends  on  the  following  factors:

 Return  address
 Values  of  all  local  variables  and  formal  param e t e r s .

The  Total  space  occupied  by  the  progra m  during  the  execution  of  the
progra m  is  the  sum  of  the  fixed  space  and  the  variable  space.

(i) Fixed  spac e  -  The  space  occupied  by  the  instruc tion  space,
simple  variables  and  constan t s .

(ii) Variable  spac e  –  The  dynamically  allocated  space  to  the
various  data  structu r e s  and  the  environme n t  stack  space  varies
according  to  the  input  from  the  user.

Spac e  co m p l e x i t y  S(P)  =  c  +  S p

c  à Fixed  space  or  constan t  space
S p à Variable  space

We  will  be  interes t e d  in  estimating  only  the  variable  space  because  that
is  the  one  which  varies  according  to  the  user  input.

TIME  COMPLEXITY

Tim e  co m p l e x i t y :   Time  complexi ty  of  the  program  is  defined  as  the
amount  of  comput er  time  it  needs  to  run  to  comple tion.

The  time  complexity  can  be  measu re d ,  by  measuring  the  time
taken  by  the  progra m  when  it  is  executed .   This  is  an  experimen t a l
method.   But  this  is  done  very  rarely.   We  always  try  to  estimate  the  time
consum e d  by  the  progra m  even  before  it  is  run  for  the  first  time.   

The  time  complexi ty  of  the  program  depends  on  the  following
factors:

 Compiler  used  –  some  compilers  produce  optimized  code
which  consum es  less  time  to  get  executed .

 Compiler  options  – The  optimization  options  can  be  set  in  the
options  of  the  compiler .

 Target  comput er  – The  speed  of  the  compute r  or  the  number
of  instruc t ions  executed  per  second  differs  from  one
compute r  to  anothe r .
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The  total  time  taken  for  the  execution  of  the  progra m  is  the  sum  of  the
compilation  time  and  the  execution  time.

(i) Compi l e  time  –  The  time  taken  for  the  compilation  of  the
progra m  to  produce  the  interme dia t e  object  code  or  the
compiler  version  of  the  progra m.   The  compilation  time  is  taken
only  once  as  it  is  enough  if  the  progra m  is  compiled  once.   If
optimized  code  is  to  be  genera t e d ,  then  the  compila tion  time
will  be  higher .

(ii) Run  time  or  Execut i o n  time  -  The  time  taken  for  the
execution  of  the  progra m.   The  optimized  code  will  take  less
time  to  get  executed .  

Tim e  co m p l e x i t y  T(P)  =  c  +  T p

c  à Compile  time
Tp  à Run  time  or  execution  time

We  will  be  interes t e d  in  estimating  only  the  execution  time  as  this  is  the
one  which  varies  according  to  the  user  input.

Estima t i n g  the  Execut i o n  time:

Progr a m  st e p:   Program  step  is  a  meaningful  segme n t  of  a  program
which  is  independ e n t  of  instance  characteris tics.   Instance
characteris tics  are  the  variables  whose  values  are  decided  by  the  user
input  at  that  instant  of  time.

Steps  in  estimating  the  execution  time  of  program:

(i) Identify  one  or  more  key  opera tions  and  dete rmine  the  number  of
times  these  are  perform ed .   That  is  find  out  how  many  key
opera t ions  are  presen t  inside  a  loop  and  how  many  times  that  loop
is  executed .

(ii) Determine  the  total  number  of  steps  executed  by  the  progra m.

The  time  complexity  will  be  propor tional  to  the  sum  of  the  above  two.

ASYMPTOTIC  NOTATIONS

Asymptotic  nota tions  –  Asymptotic  nota tions  are  the  nota tions  used  to
describe  the  behavior  of  the  time  or  space  complexity.

Let  us  repre se n t  the  time  complexity  and  the  space  complexity  using  the
common  function  f(n).

The  various  asympto tic  nota tions  are:

(i) O ( Big  Oh  notation  )
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(ii)  ( Omega  notation  )Ω
(iii)  ( Theta  notation  )θ
(iv) o ( Little  Oh  notation  )

O – Big  Oh  notation

The  big  Oh  nota tion  provides  an  upper  bound  for  the  function  f(n).

The  function  f(n)  =  O(g(n))  if  and  only  if  there  exists  positive  constan t s
c  and  n 0  such  that  f(n)   cg(n)  for  all  n   n≤ ≥ 0 .

Examples:

1. f(n)  =  3n  +  2  

Let  us  take  g(n)  =  n
        c    =   4
        n 0   =  2

Let  us  check  the  above  condition

3n  +  1   4n     ≤ for  all  n   2≥

The  condition  is  satisfied.   Hence  f(n)  =  O(n).

2. f(n)  =  10n 2  +  4n  +  2  

Let  us  take  g(n)  =  n 2

c  =  11
n 0  =  6

Let  us  check  the  above  condition

10n 2  +  4n  +  2   11n  ≤ for  all  n   6≥

The  condition  is  satisfied.   Hence  f(n)  =  O(n 2).

 - Omega  nota tionΩ

The   notation  gives  the  lower  bound  for  the  function  f(n).Ω

The  function  f(n)  =  (g(n))  if  and  only  if  there  exists  positive  constan t sΩ
c  and  n 0  such  that  f(n)   cg(n)  for  all  n   n≥ ≥ 0 .

Examples:

1. f(n)  =  3n  +  2  

Let  us  take  g(n)  =  n
        c    =   3
        n 0   =  0
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Let  us  check  the  above  condition

3n  +  1   3n     ≥ for  all  n   0≥

The  condition  is  satisfied.   Hence  f(n)  =  (n).Ω

2. f(n)  =  10n 2  +  4n  +  2  

Let  us  take  g(n)  =  n 2

c  =  10
n 0  =  0

Let  us  check  the  above  condition

10n 2  +  4n  +  2   10n  ≥ for  all  n   0≥

The  condition  is  satisfied.   Hence  f(n)  =  (nΩ 2).

 – Theta  notat io nθ

The  theta  nota tion  is  used  when  the  function  f(n)  can  be  bounded  by  both
from  above  and  below  the  same  function  g(n).

f(n)  =  (g(n))  if and  only  if there  exists  some  positive  constan t s  cθ 1  and  c 2

and  n 0, such  that  c 1g(n)   f(n)   c≤ ≤ 2g(n)  for  all  n   n≥ 0.  

We  have  seen  in  the  previous  two  cases,

3n  +  2  =  O(n)  and  3n  +  2  =  (n)Ω

Hence  we  can  write  3n  +  2  =  (n)θ

o  - Little  Oh  notat io n  

f(n)  =  o(g(n))  if and  only  if f(n)  =  O(g(n))  and  f(n)   (g(n))≠ Ω

For  example,

3n  +  2  =  O(n 2)  but   3n  +  2   (n≠ Ω 2)

Therefore  it  can  be  written  as  3n  +  2   =  o(n 2)
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SEARCHING AND SORTING

Searching is used to find the location where an element is available. There are two types of search
techniques. They are:

1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure. It is a way in which
the elements are organized systematically for some purpose. For example, a dictionary in which
words are arranged in alphabetical order and telephone director in which the subscriber names are
listed in alphabetical order. There are many sorting techniques out of which we study the following.

1. Bubble sort

2. Quick sort

3. Selection sort and 

4. Heap sort

LINEAR SEARCH

This is the simplest of all searching techniques. In this technique, an ordered or unordered list will be
searched one by one from the beginning until the desired element is found. If the desired element is
found in the list then the search is successful otherwise unsuccessful. 

Suppose  there  are  ‘n’ elements  organized  sequentially  on  a  List.  The  number  of  comparisons
required to retrieve an element from the list, purely depends on where the element is stored in the list.
If it is the first element, one comparison will do; if it is second element two comparisons are necessary
and so on. On an average you need [(n+1)/2] comparison’s to search an element. If search is not
successful, you would need ’n’ comparisons.

The time complexity of linear search is O(n).

Algorithm:

Let array a[n] stores n elements. Determine whether element ‘x’ is present or not.

linsrch(a[n], x) 
{

index = 0;
flag = 0;
while (index < n) do
{ 

if (x == a[index]) 
{

flag = 1;
break;

}
index ++;

}
if(flag == 1)

printf(“Data found  at %d position“, index);
else

printf(“data not found”);

}
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Example 1:

Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, 20

If we are searching for: 45, we’ll look at 1 element before success
39, we’ll look at 2 elements before success
8, we’ll look at 3 elements before success
54, we’ll look at 4 elements before success
77, we’ll look at 5 elements before success
38 we’ll look at 6 elements before success
24, we’ll look at 7 elements before success
16, we’ll look at 8 elements before success
4, we’ll look at 9 elements before success
7, we’ll look at 10 elements before success
9, we’ll look at 11 elements before success
20, we’ll look at 12 elements before success

For any element not in the list, we’ll look at 12 elements before failure

Example 2:

Let us illustrate linear search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8
Elements -15 -6 0 7 9 23 54 82 101

Searching different elements is as follows:

1. Searching for x = 7 Search successful, data found at 3rd position

2. Searching for x = 82 Search successful, data found at 7th position

3. Searching for x = 42 Search un-successful, data not found

A non-recursive program for Linear Search:

# include <stdio.h>
# include <conio.h>

main()
{

int number[25], n, data, i, flag = 0;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements: ");
for(i = 0; i < n; i++)

scanf("%d", &number[i]);
printf("\n Enter the element to be Searched: ");
scanf("%d", &data);
for( i = 0; i < n; i++)
{

if(number[i] == data)
{

flag = 1;
break;

}
}
if(flag == 1)

printf("\n Data found at location: %d", i+1);
else

printf("\n Data not found ");
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}

A Recursive program for linear search:

# include <stdio.h>
# include <conio.h>

void linear_search(int a[], int data, int position, int n)
{

int mid;
if(position < n)
{

if(a[position] == data)
printf("\n Data Found at %d ", position);

else
linear_search(a, data, position + 1, n);

}
else

printf("\n Data not found");
}

void main()
{

int a[25], i, n, data;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements: ");
for(i = 0; i < n; i++)
{

scanf("%d", &a[i]);
}
printf("\n Enter the element to be seached: ");
scanf("%d", &data);
linear_search(a, data, 0, n);
getch();

}

BINARY SEARCH

If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < xn . When we are given a
element  ‘x’,  binary search is  used to find the corresponding element  from the list.  In case ‘x’  is
present, we have to determine a value ‘j’ such that a[j] = x (successful search). If ‘x’ is not in the list
then j is to set to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and compare ‘x’ with
a[mid].  If x = a[mid]  then the desired record has been found.           If x < a[mid] then ‘x’ must be in
that  portion  of  the  file  that  precedes a[mid].  Similarly,  if  a[mid]  >  x,  then  further  search  is  only
necessary in that part of the file which follows a[mid]. If we use recursive procedure of finding the
middle key a[mid] of the un-searched portion of a file, then every un-successful comparison of ‘x’ with
a[mid] will eliminate roughly half the un-searched portion from consideration. 

Since the array size is roughly halved after each comparison between ‘x’ and a[mid], and since an
array of length ‘n’ can be halved only about log2n times before reaching a trivial length, the worst case
complexity of Binary search is about log2n 

Algorithm:
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Let array a[n] of elements in increasing order, n  0, determine whether ‘x’ is present, and if so, set j
such that x = a[j] else return 0.

binsrch(a[], n, x) 
{

low = 1; high = n; 
while (low < high) do
{ 

mid =  (low + high)/2 
if (x < a[mid])  

high = mid – 1;
else if (x > a[mid]) 

low = mid + 1;
else return mid;

}
return 0;

 }

low and high are integer variables such that each time through the loop either ‘x’ is found or low is
increased by at least one or  high is decreased by at least one. Thus we have two sequences of
integers  approaching  each  other  and  eventually  low will  become  greater  than  high causing
termination in a finite number of steps if ‘x’ is not present. 

Example 1:

Let us illustrate binary search on the following 12 elements:

Index 1 2 3 4 5 6 7 8 9 10 11 12
Elements 4 7 8 9 16 20 24 38 39 45 54 77

If we are searching for x = 4: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4, found

If we are searching for x = 7: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4
low = 2, high = 2, mid = 4/2 = 2, check 7, found

If we are searching for x = 8: (This needs 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8, found

If we are searching for x = 9: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9, found

If we are searching for x = 16: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9
low = 5, high = 5, mid = 10/2 = 5, check 16, found

If we are searching for x = 20: (This needs 1 comparison)
low = 1, high = 12, mid = 13/2 = 6, check 20, found

If we are searching for x = 24: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 10, mid = 17/2 = 8, check 38
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low = 7, high = 7, mid = 14/2 = 7, check 24, found

If we are searching for x = 38: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 10, mid = 17/2 = 8, check 38, found

If we are searching for x = 39: (This needs 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39, found

If we are searching for x = 45: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 10, high = 10, mid = 20/2 = 10, check 45, found

If we are searching for x = 54: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54, found

If we are searching for x = 77: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 12, high = 12, mid = 24/2 = 12, check 77, found
The number of comparisons necessary by search element:

20 – requires 1 comparison; 8 and 39 – requires 2 comparisons; 
4, 9, 38, 54 – requires 3 comparisons; and 7, 16, 24, 45, 77 – requires 4 comparisons

Summing the comparisons,  needed to find all  twelve items and dividing by 12, yielding 37/12 or
approximately 3.08 comparisons per successful search on the average. 

Example 2:

Let us illustrate binary search on the following 9 elements:

Index 1 2 3 4 5 6 7 8 9
Elements -15 -6 0 7 9 23 54 82 101

The number of comparisons required for searching different elements is as follows:
1. If we are searching for x = 101: (Number of comparisons = 4)

low high mid
 1  9  5

6  9  7
 8  9  8
 9  9        9

        found
    
2. Searching for x = 82:  (Number of comparisons = 3)

low high mid
 1  9  5
 6  9  7
 8  9  8

        found
    
3. Searching for x = 42: (Number of comparisons = 4)
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          low     high    mid
 1 9  5
 6 9  7
 5 6  5
 6 6  6
 7 6   not found   

4. Searching for x = -14: (Number of comparisons = 3)             

low high mid
 1  9  5
 4        4         2
 1  1  1
 2  1   not found

   
Continuing in this manner the number of element comparisons needed to find each of nine elements
is: 

Index 1 2 3 4 5 6 7 8 9
Elements -15 -6 0 7 9 23 54 82 101
Comparisons 3 2 3 4 1 3 2 3 4

No element requires more than 4 comparisons to be found. Summing the comparisons needed to find
all  nine items and dividing by 9,  yielding 25/9 or approximately 2.77 comparisons per successful
search on the average. 

There are ten possible ways that an un-successful search may terminate depending upon the value of
x.

If x < a(1), a(1) < x < a(2), a(2) < x < a(3), a(5) < x < a(6), a(6) < x <  a(7) or a(7) < x < a(8) the
algorithm requires 3 element comparisons to determine that ‘x’ is not present. For all of the remaining
possibilities  BINSRCH  requires  4  element  comparisons.  Thus  the  average  number  of  element
comparisons for an unsuccessful search is:

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4

Time Complexity:

The time complexity of binary search in a successful search is O(log n) and for an unsuccessful
search is O(log n).
A non-recursive program for binary search:

# include <stdio.h>
# include <conio.h>

main()
{

int number[25], n, data, i, flag = 0, low, high, mid;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");
for(i = 0; i < n; i++)

scanf("%d", &number[i]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data);
low = 0; high =  n-1;
while(low <= high)
{

mid = (low + high)/2;
if(number[mid] == data)
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{
flag = 1;
break;

}
else
{

if(data < number[mid])
high = mid - 1;

else
low = mid + 1;

}
}
if(flag == 1)

printf("\n Data found at location: %d", mid + 1);
else

printf("\n Data Not Found ");
}

A recursive program for binary search:

# include <stdio.h>
# include <conio.h>

void bin_search(int a[], int data, int low, int high)
{

int mid ;
if( low <= high)
{

mid = (low + high)/2;
if(a[mid] == data)

printf("\n Element found at location: %d ", mid + 1);
else
{

if(data < a[mid])
bin_search(a, data, low, mid-1);

else
bin_search(a, data, mid+1, high);

}
}
else

printf("\n Element not found");
}

void main()
{

int a[25], i, n, data;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");
for(i = 0; i < n; i++)

scanf("%d", &a[i]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data);
bin_search(a, data, 0, n-1);
getch();

}

Bubble Sort:

The bubble sort is easy to understand and program. The basic idea of bubble sort is to pass through
the  file  sequentially  several  times.  In  each  pass,  we compare  each  element  in  the  file  with  its
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successor i.e., X[i] with X[i+1] and interchange two element when they are not in proper order. We will
illustrate this sorting technique by taking a specific example. Bubble sort is also called as exchange
sort.

Consider the array x[n] which is stored in memory as shown below: 

X[0] X[1] X[2] X[3] X[4] X[5]

33 44 22 11 66 55

Suppose we want our array to be stored in ascending order. Then we pass through the array 5 times
as described below: 

Pass 1: (first element is compared with all other elements)

We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1] if X[i] > X[i+1]. The
process is shown below: 

X[0] X[1] X[2] X[3] X[4] X[5] Remarks

33 44 22 11 66 55

22 44

11 44

44 66

55 66

33 22 11 44 55 66

The biggest number 66 is moved to (bubbled up) the right most position in the array.

Pass 2: (second element is compared)

We repeat  the same process,  but  this  time we don’t  include X[5]  into  our  comparisons.  i.e.,  we
compare X[i]  with X[i+1] for  i=0, 1, 2,  and 3 and interchange X[i]  and X[i+1]  if  X[i]  > X[i+1]. The
process is shown below: 

X[0] X[1] X[2] X[3] X[4] Remarks

33 22 11 44 55

22 33

11 33

33 44

44 55

22 11 33 44 55

The second biggest number 55 is moved now to X[4].

Pass 3: (third element is compared)

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this, we move the
third biggest number 44 to X[3].

X[0] X[1] X[2] X[3] Remarks

22 11 33 44

11 22

14



22 33

33 44

11 22 33 44

Pass 4: (fourth element is compared)

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth biggest number
33 to X[2].

X[0] X[1] X[2] Remarks

11 22 33

11 22

22 33

Pass 5: (fifth element is compared)

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the fifth biggest
number 22 to X[1]. At this time, we will have the smallest number 11 in X[0]. Thus, we see that we
can sort the array of size 6 in 5 passes. 

For an array of size n, we required (n-1) passes. 

Program for Bubble Sort:

#include <stdio.h>
#include <conio.h>

void bubblesort(int x[],int n)
{

int i,  j,  t;
for (i = 0; i < n; i++)
{

for (j = 0; j <n-i; j++)
{

if (x[j] > x[j+1])
{

t = x[j];
x[j] = x[j+1];
x[j+1] = t;

}
}

}
}

main()
{

int i, n, x[25];
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d",&n);
printf("\n Enter Data:");
for(i = 0; i < n ; i++)

scanf("%d", &x[i]);
bubblesort(x,n);
printf ("\nArray Elements after sorting: ");
for (i = 0; i < n; i++)

15



printf ("%5d", x[i]);
}

Time Complexity:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1) comparisons on
each pass. Thus the total  number of comparisons is (n-1) * (n-1) = n2 – 2n + 1, which is O(n2).
Therefore bubble sort is very inefficient when there are more elements to sorting. 

Selection Sort:

Now,  you  will  learn  another  sorting technique,  which  is  more  efficient  than  bubble  sort  and the
insertion sort. This sort, as you will see, will not require no more than n-1 interchanges. The sort we
are talking about is selection sort.

Suppose x is  an array of  size n stored in memory.  The selection sort  algorithm first  selects the
smallest  element in the array x and place it  at array position 0; then it  selects the next smallest
element in the array x and place it at array position 1. It simply continues this procedure until it places
the biggest element in the last position of the array. We will now present to you an algorithm for
selection sort. 

The array is passed through (n-1) times and the smallest element is placed in its respective position
in the array as detailed below: 

Pass 1:
Find the location j of the smallest element in the array x [0], x[1], . . . . x[n-1], and then interchange x[j]
with x[0]. Then x[0] is sorted. 

Pass 2:
Leave the first element and find the location j of the smallest element in the sub-array x[1], x[2], . . . .
x[n-1], and then interchange x[1] with x[j]. Then x[0], x[1] are sorted.

Pass 3: 
Leave the first two elements and find the location j of the smallest element in the sub-array x[2], x[3], .
. . . x[n-1], and then interchange x[2] with x[j]. Then x[0], x[1], x[2] are sorted.

Pass (n-1):
Find the location j of the smaller of the elements x[n-2] and x[n-1], and then interchange x[j] and x[n-
2].  Then x[0],  x[1],  .  .  .  .  x[n-2] are sorted. Of course, during this pass x[n-1]  will  be the biggest
element and so the entire array is sorted. 

Time Complexity:

In  general  we  prefer  selection sort  in  case  where  the  insertion  sort  or  the bubble  sort  requires
exclusive swapping. In spite of superiority of the selection sort over bubble sort and the insertion sort
(there is significant decrease in run time), its efficiency is also O(n2) for n data items.

Example:

Let us consider the following example with 9 elements to analyze selection Sort: 

1 2 3 4 5 6 7 8 9 Remarks

65 70 75 80 50 60 55 85 45 find the first smallest element

i j  swap a[i] & a[j]

45 70 75 80 50 60 55 85 65 find the second smallest element

i j swap a[i] and a[j]

45 50 75 80 70 60 55 85 65 Find the third smallest element

i j swap a[i] and a[j]
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45 50 55 80 70 60 75 85 65 Find the fourth smallest element

i j swap a[i] and a[j]

45 50 55 60 70 80 75 85 65 Find the fifth smallest element

i j swap a[i] and a[j]

45 50 55 60 65 80 75 85 70 Find the sixth smallest element

i j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the seventh smallest element

i   j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the eighth smallest element

i J swap a[i] and a[j]

45 50 55 60 65 70 75 80 85 The outer loop ends.

Non-recursive Program for selection sort:

# include<stdio.h>
# include<conio.h>

void selectionSort( int low, int high );

int a[25];

int main()
{

int num,  i= 0;
clrscr();
printf( "Enter the number of elements: " );
scanf("%d", &num);
printf( "\nEnter the elements:\n" );
for(i=0; i < num; i++)

scanf( "%d", &a[i] );
selectionSort( 0, num - 1 );
printf( "\nThe elements after sorting are: " );
for( i=0; i< num; i++ )

printf( "%d    ", a[i] );
return 0;

}

void selectionSort( int low, int high )
{

int i=0, j=0, temp=0, minindex;
for( i=low; i <= high; i++ )
{

minindex = i;
for( j=i+1; j <= high; j++ )

if( a[j] < a[minindex] )
minindex = j;

temp = a[i];
a[i] = a[minindex];
a[minindex] = temp;

}
}

Recursive Program for selection sort: 

#include <stdio.h>
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#include<conio.h>

int x[6] = {77, 33, 44, 11, 66};

selectionSort(int);

main()
{

int i, n = 0;
clrscr();
printf (" Array Elements before sorting: ");
for (i=0; i<5; i++)

printf ("%d  ", x[i]);
selectionSort(n); /* call selection sort */
printf ("\n Array Elements after sorting: ");
for (i=0; i<5; i++)

printf ("%d  ", x[i]);
}

selectionSort( int n)
{

int k, p, temp, min;
if (n== 4)

return (-1);
min = x[n];
p = n;
for (k = n+1; k<5; k++)
{

if (x[k] <min)
{

min = x[k];
p = k;

}
}
temp = x[n]; /* interchange x[n] and x[p] */
x[n] = x[p];
x[p] = temp;
n++ ;
selectionSort(n);

}

INSERTION  SORT

The  main  idea  behind  the  inser tion  sort  is  to  inser t  the  i th  element
in  its  correc t  place  in  the  i th  pass.   Suppose  an  array  A with  n  element s
A[1],  A[2],…A[N]  is  in  memory.   The  inser tion  sort  algorithm  scans  A
from  A[1]  to  A[N],  inser t ing  each  element  A[K]  into  its  prope r  position  in
the  previously  sorted  subar r ay  A[1],  A[2],..A[K-1].

Princ i p l e :   In  Insertion  Sort  algorithm,  each  elemen t  A[K]  in  the  list  is
compared  with  all  the  elem en t s  before  it  (  A[1]  to  A[K-1]).   If  any
elem en t  A[I]  is  found  to  be  greater  than  A[K]  then  A[K]  is  inserted  in
the  place  of  A[I}.   This  process  is  repeated  till  all  the  elemen t s  are
sorted.

Algor i t h m :

18



Proce d u r e  INSERTION SORT(A,  N)

//  A is  the  array  containing  the  list  of  data  items
//  N  is  the  number  of  data  items  in  the  list

Last  ß N  – 1

Repea t  For  Pass  =  1  to  Last  Step  1
Repea t  For  I =  0  to  Pass  – 1  Step  1

If A[Pass]  <  A[I]
Then

Temp  ß A[Pass]
Repea t  For  J =  Pass  -1  to  I Step  -1

A[J +1]  ß A[J]
End  Repea t
A[I]  ß Temp

End  If
End  Repea t

End  Repea t

End  INSERTIONSORT

In  Inser t ion  Sort  algorithm,  Last  is  made  to  point  to  the  last
element  in  the  list  and  Pass  is  made  to  point  to  the  second  element  in  the
list.   In  every  pass  the  Pass  is  increm e n t e d  to  point  to  the  next  element
and  is  continued  till  it  reaches  the  last  element .   During  each  pass
A[Pass]  is  compare d  all  elemen t s  before  it.   If  A[Pass]  is  lesse r  than  A[I]
in  the  list,  then  A[Pass]  is  inser ted  in  position  I.   Finally,  a  sorted  list  is
obtained.

For  performing  the  inser tion  opera t ion,  a  variable  temp  is  used  to
safely  store  A[Pass]  in  it  and  then  shift  right  element s  star ting  from  A[I]
to  A[Pass- 1].

Exam p l e :

N  =  10  à Number  of  elemen t s  in  the  list
L à Last
P  à Pass

i  =  0 i  =1 i  =  2 i  =  3 i  =  4 i  =  5 i  =  6 i  =  7 i  =  8 i  =  9

42 23 74 11 65 58 94 36 99 87

P=1 A[P] <  A[0]  à Insert  A[P] at  0 L=9

23 42 74 11 65 58 94 36 99 87

P=2 L=9
A[P] is  greater  than  all  elemen t s  before  it.   Hence  No  Change
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23 42 74 11 65 58 94 36 99 87

P=3   A[P] <  A[0]  à Insert  A[P] at  0 L=9

11 23 42 74 65 58 94 36 99 87

P=4 L=9
A[P] <  A[3]  à Insert  A[P] at  3

11 23 42 65 74 58 94 36 99 87

P=5 L=9
A[P] <  A[3]  à Insert  A[P] at  3

11 23 42 58 65 74 94 36 99 87

P=6 L=9
A[P] is  greater  than  all  elemen t s  before  it.   Hence  No  Change

11 23 42 58 65 74 94 36 99 87

P=7 L=9
A[P] <  A[2]  à Insert  A[P] at  2

11 23 36 42 58 65 74 94 99 87

P=8 L=9
A[P] is  greater  than  all  elemen t s  before  it.   Hence  No  Change

11 23 36 42 58 65 74 94 99 87

P,  L=9
A[P] <  A[7]  à Insert  A[P] at  7

Sorted  List:

11 23 36 42 58 65 74 87 94 99

Progr a m :

void  array::sor t()
{

int  temp,  last= coun t- 1;
for  (int  pass = 1 ;  pass < = l a s t ;p a s s + + )
{

for  (int  i=0;  i<pass;  i+ +)
{
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if (a[pass] < a [i])
{

temp = a[ p a s s] ;
for  (int  j=pass- 1;j> =i ;j- -)

a[j+1] = a [j];
a[i]= t e m p;

}
}

}
}

In  the  sort  function,  the  integer  variable  last  is  used  to  point  to  the
last  element  in  the  list.   The  first  pass  star ts  with  the  variable  pass
pointing  to  the  second  elemen t  and  continues  till  pass  reaches  the  last
element .   In  each  pass,  a[pass]  is  compared  with  all  the  element s  before
it  and  if a[pass]  is  lesser  than  a[i],  then  it  is  inser t ed  in  position  i.   Before
inser t ing  it,  the  element s  a[i]  to  a[pass- 1]  are  shifted  right  using  a
tempora ry  variable.

Advan t a g e s :
1. Sorts  the  list  faster  when  the  list  has  less  number  of  element s .  
2. Efficient  in  cases  where  a  new  elemen t  has  to  be  inser ted  into  a

sorted  list.  

Disad v a n t a g e s :
1. Very  slow  for  large  values  of  n.  
2. Poor  performa nc e  if the  list  is  in  almost  reverse  order .  
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Quick Sort
 
The quick sort was invented by Prof. C. A. R. Hoare in the early 1960’s. It was one of the first more
efficient sorting algorithms. It is an example of a class of algorithms that work by what is usually called
“divide and conquer”.

In essence, the quick sort algorithm partitions the original array by rearranging it into two groups. The
first group contains those elements less than some arbitrary chosen value taken from the set, and the
second group contains those elements greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has been rearranged in this way with
respect to the pivot, the very same partitioning is recursively applied to each of the two subsets.
When all the subsets have been partitioned and rearranged, the original array is sorted.
The function partition() makes use of two pointers up and down which are moved toward each other
in the following fashion:

1. Repeatedly increase the pointer up by one position until a[up] > =pivot.

2. Repeatedly decrease the pointer down by one position until a[down] <=pivot.

3. If down > up, interchange a[down] with a[up]

4. Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer
crosses ‘down’ pointer, the position for pivot is found and place pivot element in ‘down’
pointer position.

The program uses a recursive function quicksort().  The algorithm of  quick sort  function sorts  all
elements in an array ‘a’ between positions ‘low’ and ‘high’.

1. It terminates when the condition low >= high is satisfied. This condition will be satisfied
only when the array is completely sorted.

2. Here we choose  the first  element  as  the ‘pivot’.  So,  pivot  =  x[low].  Now it  calls  the
partition function to find the proper position j of the element x[low] i.e. pivot. Then we will
have two sub-arrays x[low], x[low+1], . . . . . . . x[j-1] and x[j+1], x[j+2], . . .x[high].

3. It calls itself recursively to sort the left sub-array x[low], x[low+1], . . . . . . . x[j-1] between
positions low and j-1 (where j is returned by the partition function).

4. It  calls  itself  recursively  to  sort  the right  sub-array  x[j+1],  x[j+2],  .  .  .x[high]  between
positions j+1 and high.

Algorithm

Sorts the elements a[p], . . . . . ,a[q] which reside in the global array a[n] into ascending order. The a[n
+ 1] is considered to be defined and must be greater than all elements in a[n]; a[n + 1] = +  

quicksort (p, q)
{

if ( p < q ) then
{

call j = PARTITION(a, p, q+1);     // j is the position of the partitioning element
call quicksort(p, j – 1);
call quicksort(j + 1 , q);

}
}

partition(a, m, p)
{

v = a[m]; up = m; down = p; // a[m] is the partition element 
do
{
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repeat  
up = up + 1; 

until (a[up] > v);

repeat  
down = down – 1;

until (a[down] < v);
if (up < down) then call interchange(a, up, down);

 } while (up > down);

a[m] = a[down]; 
a[down] = v;    
return (down);

}

interchange(a, up, down)
{

p = a[up];
a[up] = a[down]; 
a[down] = p;

}

Time complexity: 

There  are  several  choices  for  choosing  the  ‘pivot’  element  through  which  we  can  improve  the
efficiency of quick sort.  For example, one may choose the ‘pivot’  element as median or mean or
middle element. Also, a non-recursive method could be developed for execution efficiency. When
these improvements are made, experiments indicate the fact that the total number of comparisons for
quick sort is of O(n log n).

Example:

Select first element as the pivot element. Move ‘up’ pointer from left to right in search of an element
larger than pivot. Move the ‘down’ pointer from right to left in search of an element smaller than pivot.
If such elements are found, the elements are swapped. This process continues till the ‘up’ pointer
crosses the ‘down’ pointer. If ‘up’ pointer crosses ‘down’ pointer, the position for pivot is found and
interchange pivot and element at ‘down’ position. 

Let us consider the following example with 13 elements to analyze quick sort: 

1 2 3 4 5 6 7 8 9 10 11 12 13 Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot up dow
n

swap up
& down 

04 79

up dow
n

swap up
& down 

02 57
dow

n up

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)
swap

pivot &
down

pivot dow
n

swap
pivot &
down

(02 08 16 06 04) 24
pivot,
down

up swap
pivot &

23



down

02 (08 16 06 04)

pivot up dow
n

swap up
& down

04 16
dow

n Up

(06 04) 08   
(16)

swap
pivot &
down

pivot
,

dow
n

up

(04) 06
swap

pivot &
down

04
pivot

,
dow

n
16

pivot
,

dow
n

(02 04 06 08 16 24) 38

(56 57 58 79 70 45)

pivot up dow
n

swap up
& down

45 57
dow

n up

(45) 56 (58 79 70 57)
swap

pivot &
down

45
pivot

,
dow

n

swap
pivot &
down

(58
pivot

79
up 70

57)
dow

n

swap up
& down

57 79
dow

n up

(57) 58 (70 79)
swap

pivot &
down

57
pivot

,
dow

n
(70 79)

pivot
,

dow
n

up
swap

pivot &
down

70
79

pivot
,

dow
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n

(45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

Program for Quick Sort (Recursive version):

# include<stdio.h>
# include<conio.h>

void quicksort(int, int);
int partition(int, int);
void interchange(int, int);

int array[25];

int main()
{

int num, i = 0;
clrscr();
printf( "Enter the number of elements: " );
scanf( "%d", &num);
printf( "Enter the elements: " );
for(i=0; i < num; i++)

scanf( "%d", &array[i] );
quicksort(0, num -1);
printf( "\nThe elements after sorting are: " );
for(i=0; i < num; i++)

printf("%d  ", array[i]);
return 0;

}
void quicksort(int low, int high)
{

int pivotpos;
if( low < high )
{

pivotpos = partition(low, high + 1);
quicksort(low, pivotpos - 1);
quicksort(pivotpos + 1, high);

}
}

int partition(int low, int high)
{

int pivot = array[low];
int up = low, down = high;

do
{

do
up = up + 1;

while(array[up] < pivot );

do
down = down - 1;

while(array[down] > pivot);

if(up < down) 
interchange(up, down);

}while(up < down);
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array[low] = array[down];
array[down] = pivot;
return down;

}

void interchange(int i, int j)
{

int temp;
temp = array[i];
array[i] = array[j];
array[j] = temp;

}

Heap and Heap Sort

Heap is a data structure, which permits one to insert elements into a set and also to find the largest
element efficiently. A data structure, which provides these two operations, is called a priority queue. 

Max and Min Heap data structures:

A max heap is an almost complete binary tree such that the value of each node is greater than or
equal to those in its children. 

M a x h e a p  M i n  h e a p  

9 5  

8 5  

7 5  2 5  

4 5  

1 5  3 5  

4 5  

5 5  

1 5  

6 5  3 5  

2 5  

7 5  

5 5  6 5  8 5  9 5  

A min heap is an almost complete binary tree such that the value of each node is less than or equal to
those in its children. 

Representation of Heap Tree:

Since  heap  is  a  complete  binary  tree,  a  heap  tree  can  be  efficiently  represented  using  one
dimensional array. This provides a very convenient way of figuring out where children belong to. 

 The root of the tree is in location 1. 

 The left child of an element stored at location i can be found in location 2*i. 

 The right child of an element stored at location i can be found in location 2*i+1. 

 The parent of an element stored at location i can be found at location floor(i/2). 

The elements of the array can be thought of as lying in a tree structure. A heap tree represented
using a single array looks as follows:

X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8]
65 45 60 40 25 50 55 30
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2 5  5 5  

6 0  

5 0  

6 5  

4 5  

3 0  

4 0  

x [ 1 ]  

x [ 3 ]  

x [ 7 ]  x [ 6 ]  

x [ 2 ]  

x [ 5 ]  x [ 4 ]  

x [ 8 ]  He a p  T r e e  

Operations on heap tree:

The major operations required to be performed on a heap tree: 

1. Insertion, 

2. Deletion and 

3. Merging. 

Insertion into a heap tree:

This operation is used to insert a node into an existing heap tree satisfying the properties of heap
tree. Using repeated insertions of data, starting from an empty heap tree, one can build up a heap
tree. 

Let us consider the heap (max) tree. The principle of insertion is that, first we have to adjoin the data
in the complete binary tree. Next, we have to compare it with the data in its parent; if the value is
greater than that at parent then interchange the values. This will continue between two nodes on path
from the newly inserted node to the root node till we get a parent whose value is greater than its child
or we reached the root. 

For illustration, 35 is added as the right child of 80. Its value is compared with its parent’s value, and
to be a max heap, parent’s value greater than child’s value is satisfied, hence interchange as well as
further comparisons are no more required. 

As another illustration, let us consider the case of insertion 90 into the resultant heap tree. First, 90
will be added as left child of 40, when 90 is compared with 40 it requires interchange. Next, 90 is
compared with 80, another interchange takes place. Now, our process stops here, as 90 is now in
root node. The path on which these comparisons and interchanges have taken places are shown by
dashed line. 

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows:

Max_heap_insert (a, n)
{

//inserts the value in a[n] into the heap which is stored at a[1] to a[n-1]
 

integer i, n;
i = n;  
item = a[n]  ; 
while ( (i > 1) and (a[  i/2  ] < item ) do 
{

a[i] = a[  i/2  ] ; // move the parent down
i =  i/2   ;

}
a[i] = item ;
return true ;

}

Example:

Form a heap by using the above algorithm for the given data 40, 80, 35, 90, 45, 50, 70.
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40 

40 

80 

80 

40 

1.         Insert 40: 

2.         Insert 80: 

80 

40 
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9 0  

8 0  

4 0  5 0  

9 0  

3 5  

9 0  

9 0  

8 0  

4 5  

4 0  3 5  

5 0  8 0  

3 5  

4 0  

8 0  

4 .          I n s e r t  9 0 :  

3 .          I n s e r t  3 5 :  

5 .          I n s e r t  4 5 :  

6 .          I n s e r t  5 0 :  

4 5  4 0  4 5  

9 0  

7 .          I n s e r t  7 0 :  

9 0  

4 5  3 5  

7 0  

4 5  3 5  

3 5  

8 0  

4 0  4 0  

8 0  

5 0  7 0  

5 0  

5 0  

3 5  

7 0  

5 0  

8 0  

4 0  3 5  

4 0  

9 0  

8 0  3 5  

4 0  

9 0  

9 0  

8 0  

adjust (a, i, n)
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to form a single
heap, 1 < i < n. No node has an address greater than n or less than 1. //
{

j = 2 *i  ;
item = a[i] ; 
while (j < n) do
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{
if ((j < n) and (a (j) < a (j + 1)) then j ß j + 1;
 // compare left and right child and let j be the larger child
if (item > a (j)) then break;

// a position for item is found 
else a[  j / 2  ] = a[j] // move the larger child up a level
j = 2 * j;

}
a [  j / 2  ] = item;

}

Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by 26 and this
node with data 26 is removed from the tree. Next 26 at root node is compared with its two child 45
and 63. As 63 is greater, they are interchanged. Now, 26 is compared with its children, namely, 57
and 42, as 57 is greater, so they are interchanged. Now, 26 appears as the leave node, hence re-
heap is completed. 

9 9  

4 5  6 3  

3 5  5 7  4 2  2 9  

2 7  1 2  2 4  2 6  

6 3  

4 5  5 7  

3 5  2 6  4 2  2 9  

2 7  1 2  2 4  

2 6  6 3  

2 6  
5 7  

2 6  

De l e t i n g t h e  n o d e w it h  d a t a  9 9  Af t er  De l e t i o n o f  n o d e w it h  d a t a  9 9  

HEAP SORT:

A heap sort algorithm works by first organizing the data to be sorted into a special type of binary tree
called a heap. Any kind of data can be sorted either in ascending order or in descending order using
heap tree. It does this with the following steps: 

1. Build a heap tree with the given set of data. 

2. a. Remove the top most item (the largest) and replace it with the last
element in the heap. 

b. Re-heapify the complete binary tree. 

c. Place the deleted node in the output. 

3. Continue step 2 until the heap tree is empty. 

Algorithm:

This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non-decreasing order.
First transform the elements into a heap.

heapsort(a, n)
{

heapify(a, n);
for i = n to 2 by – 1 do
{

temp = a[I];
a[i] =  a[1];
a[1] = t;
adjust (a, 1, i – 1);

}
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}

heapify (a, n)
//Readjust the elements in a[n] to form a heap. 
{

for i ß  n/2  to 1 by – 1 do adjust (a, i, n);
}

adjust (a, i, n)
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to form a single
heap, 1 < i < n. No node has an address greater than n or less than 1. //
{

j = 2 *i  ;
item = a[i] ; 
while (j < n) do
{

if ((j < n) and (a (j) < a (j + 1)) then j ß j + 1;
 // compare left and right child and let j be the larger child
if (item > a (j)) then break;

// a position for item is found 
else a[  j / 2  ] = a[j] // move the larger child up a level
j = 2 * j;

}
a [  j / 2  ] = item;

}

Time Complexity:

Each ‘n’ insertion operations takes O(log k), where ‘k’ is the number of elements in the heap at the
time. 

Likewise, each of the ‘n’ remove operations also runs in time O(log k), where ‘k’ is the number of
elements in the heap at the time. 

Since we always have k ≤ n, each such operation runs in O(log n) time in the worst case.

Thus, for ‘n’ elements it takes O(n log n) time, so the priority queue sorting algorithm runs in O(n log
n) time when we use a heap to implement the priority queue.

Example 1:

Form a heap from the set of elements (40, 80, 35, 90, 45, 50, 70) and sort the data using heap sort.

Solution:

First form a heap tree from the given set of data and then sort by repeated deletion operation:
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4 0  

3 5  8 0  

7 0  9 0  4 5  5 0  

4 0  

7 0  8 0  

3 5  9 0  4 5  5 0  

4 0  

8 0  

9 0  

5 0  3 5  

7 0  

9 0  

8 0  

4 0  

4 5  

7 0  

 

3 5  

3 5  

3 5  

7 0  

5 0  3 5  

7 0  

9 0  

4 0  

8 0  

4 5  

4 5  5 0  3 5  
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3 5  

7 0  

9 0  

8 0  

5 0  4 5  4 0  

8 0  

3 5  4 5  

3 5  

8 0  

7 0  

9 0  

4 5  

5 0  3 5  4 0  

9 0  

4 5  7 0  

5 0  

8 0  3 5  4 0  

7 0  

5 0  

8 0  3 5  4 0  

4 5  

7 0  

9 0  

5 0  

3 5  

5 0  4 5  

3 5  

4 0  7 0  8 0  9 0  

5 0  

8 0  

3 5  

7 0  4 0  

4 5  

5 0  

9 0  

1 .          Exc h a n g e  r o o t  9 0  w it h  t h e  l a s t  e l e m e n t  3 5  o f  t h e  a r r ay  a n d  r e - h e a p if y  

2 .          Exc h a n g e  r o o t  8 0  w it h  t h e  l a s t  e l e m e n t  5 0  o f  t h e  a r r ay  a n d  r e - h e a p if y  

3 .          Exc h a n g e  r o o t  7 0  w it h  t h e  l a s t  e l e m e n t  3 5  o f  t h e  a r r ay  a n d  r e - h e a p if y  

4 0  

3 5  

9 0  

4 5  

8 0  7 0  5 0  

4 5  

4 0  

4 5  

3 5  

9 0  

4 0  

8 0  7 0  5 0  

9 0  

4 0  4 5  

3 5  

8 0  7 0  5 0  

4 0  

8 0  7 0  5 0  

3 5  

4 0  

9 0  

4 5  

4 0  

4 5  3 5  

5 0  7 0  8 0  9 0  

3 5  

8 0  

4 5  

7 0  5 0  

4 0  

3 5  

9 0  

3 5  

4 0  

4 .          Exc h a n g e  r o o t  5 0  w it h  t h e  l a s t  e l e m e n t  4 0  o f  t h e  a r r ay  a n d  r e - h e a p if y  

5 .          Exc h a n g e  r o o t  4 5  w it h  t h e  l a s t  e l e m e n t  3 5  o f  t h e  a r r ay  a n d  r e - h e a p if y  

6 .          Exc h a n g e  r o o t  4 0  w it h  t h e  l a s t  e l e m e n t  3 5  o f  t h e  a r r a y  a n d  r e - h e a p if y  

T h e  s o r t e d  t r e e  

Program for Heap Sort:
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# include <stdio.h>
# include <conio.h>

void adjust(int i, int n, int a[])
{

int j, item;
j = 2 * i;
item = a[i];
while(j <= n)
{

if((j < n) && (a[j] < a[j+1]))
j++;

if(item >= a[j])
break;

else
{

a[j/2] = a[j];
j = 2*j;

}
}
a[j/2] = item;

}

void heapify(int n, int a[])
{

int i;
for(i = n/2; i > 0; i--)

adjust(i, n, a);
}

void heapsort(int n,int a[])
{

int temp, i;
heapify(n, a);
for(i = n; i > 0; i--)
{

temp = a[i];
a[i] = a[1];
a[1] = temp;
adjust(1, i - 1, a);

}
}

void main()
{

int i, n, a[20];
clrscr();
printf("\n How many element you want: ");
scanf("%d",&n);
printf("Enter %d elements: ",n);
for (i=1;i<=n;i++)

scanf("%d", &a[i]);
heapsort(n, a);
printf("\n The sorted elements are: \n");
for (i=1;i<=n;i++)

printf("%5d",a[i]);
getch();

}

MERGE  SORT
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Princ i p l e :   The  given  list  is  divided  into  two  roughly  equal  parts  called
the  left  and  the  right  subfiles.   These  subfiles  are  sorted  using  the
algorith m  recursively  and  then  the  two  subfiles  are  merged  together  to
obtain  the  sorted  file.   

Given  a  sequenc e  of  n  element s  A[1],  ….A[N],  the  genera l  idea  is  to
imagine  them  split  into  two  sets  A[1],…A[N/2]  and  A[(N/2)  +  1],…A[N].
Each  set  is  individually  sorted,  and  the  resul ting  sorted  sequences  are
merged  to  produce  a  single  sorted  sequenc e  of  N  elemen t s .   Thus  this
sorting  method  follows  Divide  and  Conque r  stra tegy.   

Algor i t h m :

Proce d u r e  MERGE(A,  low,  mid,  high )

//  A is  the  array  containing  the  list  of  data  items

I ß low,  J ß mid+ 1,  K ß low
While  I  mid  and  J  high≤ ≤

If A[I]  <  A[J]
Then

Temp[K]  ß A[I]
I ß I +  1
K ß K+1

Else
Temp[K]  ß A[J]
J ß J +  1
K ß K +  1

End  If
End  While

If I >  mid
Then

While  J  high≤

Temp[K]  ß A[J]
K ß K +  1
J ß J +  1

End  While
Else

While  I  mid≤

Temp[K]  ß A[I]
K ß K +  1
I ß I +  1

End  While
End  If

Repea t  for  K =  low  to  high  step  1
A[K] ß Temp[K]

End  Repea t
End  MERGE
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Proce d u r e  MERGESORT(A,  low,  high )

//  A is  the  array  containing  the  list  of  data  items

If low  <  high
Then  

mid  ß (low  +  high)/2
MERGESORT(low,  high)
MERGESORT(mid  +  1,  high)
MERGE(low,  mid,  high)

End  If
End  MERGESORT

The  first  algorithm  MERGE  can  be  applied  on  two  sorted  lists  to
merge  them.   Initially,  the  index  variable  I  points  to  low  and  J points  to
mid  +  1.   A[I]  is  compare d  with  A[J]  and  if  A[I]  found  to  be  lesse r  than
A[J]  then  A[I]  is  stored  in  a  tempora ry  array  and  I  is  increm en t e d
otherwise  A[J]  is  stored  in  the  tempora ry  array  and  J  is  increme n t e d .
This  comparison  is  continued  until  either  I crosses  mid  or  J crosses  high.
If I crosses  the  mid  first  then  that  implies  that  all  the  element s  in  first  list
is  accommod a t e d  in  the  tempora ry  array  and  hence  the  remaining
element s  in  the  second  list  can  be  put  into  the  tempora ry  array  as  it  is.   If
J crosses  the  high  first  then  the  remaining  element s  of  first  list  is  put  as
it  is  in  the  tempora ry  array.   After  this  process  we  get  a  single  sorted  list.
Since  this  method  merges  2  lists  at  a  time,  this  is  called  2-way  merge
sort.
 

In  the  MERGESORT  algorithm,  the  given  unsor t ed  list  is  first  split
into  N  numbe r  of  lists,  each  list  consisting  of  only  1  elemen t .   Then  the
MERGE  algorithm  is  applied  for  first  2  lists  to  get  a  single  sorted  list.
Then  the  same  thing  is  done  on  the  next  two  lists  and  so  on.   This  process
is  continued  till  a  single  sorted  list  is  obtained.

Exam p l e :

Let  L à low,  Mà mid,  H  à high

i  =  0 i  =1 i  =  2 i  =  3 i  =  4 i  =  5 i  =  6 i  =  7 i  =  8 i  =  9

42 23 74 11 65 58 94 36 99 87

U M H

In  each  pass  the  mid  value  is  calcula ted  and  based  on  that  the  list  is  split
into  two.   This  is  done  recurs ively  and  at  last  N  number  of  lists  each
having  only  one  element  is  produce d  as  shown.
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Now  merging  opera t ion  is  called  on  first  two  lists  to  produce  a  single
sorted  list,  then  the  same  thing  is  done  on  the  next  two  lists  and  so  on.
Finally  a  single  sorted  list  is  obtained.

Progr a m :

void  array::sor t(in t  low,  int  high)
{

int  mid;
if (low<high)
{

mid=(low + h igh)/2;
sort(low,mid);
sort(mid + 1 ,  high);
merge(low,  mid,  high);

}
}

void  array::merg e(in t  low,  int  mid,  int  high)
{
int  i=low,  j=mid + 1 ,  k=low,  temp[MAX];

while  (i< = mid  &&  j<= high)
if (a[i]<a[j])

temp[k + + ] = a [ i + + ] ;
else

temp[k + + ] = a [ j + + ] ;

if (i>mid)
while  (j< = high)

temp[k + + ] = a [ j + + ] ;
else

while  (i< = mid)
temp[k + + ] = a [ i + + ] ;
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for  (k=low;  k< = high;  k+ +)
a[k]= te m p[k];

}

Advan t a g e s :

1. Very  useful  for  sorting  bigger  lists.  
2. Applicable  for  external  sorting  also.  

Disad v a n t a g e s :

1. Needs  a  tempora ry  array  every  time,  for  storing  the  new  sorted
list.  

shell  Sort
The  she l l  sort ,  sometimes  called  the  “diminishing  increm en t  sort ,”
improves  on  the  inser tion  sort  by  breaking  the  original  list  into  a  numbe r
of  smaller  sublists,  each  of  which  is  sorted  using  an  inser tion  sort .  The
unique  way  that  these  sublists  are  chosen  is  the  key  to  the  shell  sort.
Instead  of  breaking  the  list  into  sublists  of  contiguous  items,  the  shell
sort  uses  an  increm en t  i,  sometimes  called  the  gap , to  crea te  a  sublist  by
choosing  all  items  that  are  i items  apar t .

Example  of  shell  Sort  : Use  Shell  sort  for  the  following  array  : 18,  32,  12,
5,  38,  30,  16,  2

Compare  the  elemen ts  at  a  gap  of  4.  i.e  18  with  38  and  so  on  and  swap  if
first  number  is  great e r  than  second.
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Compare  the  elemen ts  at  a  gap  of  2  i.e  18  with  12  and  so  on.

Now  the  gap  is  1.  So  now  use  inser t ion  sort  to  sort  this  array.

After  inser tion  sort.  The  final  array  is  sorted.
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UNIT- II
STACKS

The  data  structu r e s  seen  so  far,  allows  inser t ion  and  deletion  of
element s  at  any  place.   But  sometimes  it  is  required  to  permit  the
addition  and  deletion  of  elemen t s  only  at  one  end  that  is  either  at  the
beginning  or  at  the  end.   

Stac k s :   A  stack  is  a  data  structure  in  which  addition  of  new  elemen t
or  deletion  of  an  existing  elem en t  always  takes  place  at  the  same  end.
This  end  is  often  known  as  top  of  stack.   When  an  item  is  added  to  a
stack,  the  operation  is  called  push,  and  when  an  item  is  removed  from
the  stack  the  operation  is  called  pop.   Stack  is  also  called  as  Last- In-
First- Out  (LIFO)  list.

Operat io n s  on  Stack:

There  are  two  possible  opera t ions  done  on  a  stack.   They  are  pop
and  push  opera t ion.   

 Push:   Allows  adding  an  elemen t  at  the  top  of  the  stack.  
 Pop:   Allows  removing  an  elem en t  from  the  top  of  the  stack.  

The  Stack  can  be  implemen te d  using  both  arrays  and  linked  lists.
When  dynamic  memory  allocation  is  prefer r e d  we  go  for  linked  lists  to
implemen t  the  stacks.

ARRAY IMPLEMENTATION  OF  THE  STACK

Push  operat io n:

If  the  elemen ts  are  added  continuously  to  the  stack  using  the  push
opera t ion  then  the  stack  grows  at  one  end.   Initially  when  the  stack  is
empty  the  top  =  -1.   The  top  is  a  variable  which  indicates  the  position  of
the  topmos t  element  in  the  stack.
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PUSH(x)

If top  =  MAX – 1
Then

Print  “Stack  is  full”
Return

Else
Top  =  top  +  1
A[top]  =  x

End  if
End  PUSH(  )

Pop  operat i o n:

On  deletion  of  element s  the  stack  shrinks  at  the  same  end,  as  the
element s  at  the  top  get  removed.

POP(  )

If top  =  -1  
Then

Print  “Stack  is  empty”
Return

Else
Item  =  A[top]
A[Top]  =  0
Top  =  top  – 1
Return  item

End  if
End  POP(  )

If  arrays  are  used  for  implemen t ing  the  stacks,  it  would  be  very
easy  to  manage  the  stacks.   However ,  the  problem  with  an  array  is  that
we  are  required  to  declare  the  size  of  the  array  before  using  it  in  a
progra m.   This  means  the  size  of  the  stack  should  be  fixed.   We  can
declare  the  array  with  a  maximum  size  large  enough  to  manage  a  stack.   
As  resul t,  the  stack  can  grow  or  shrink  within  the  space  reserved  for  it.
The  following  progra m  implemen t s  the  stack  using  array.

Progr a m :

41



//  Stack  and  various  opera t ions  on  it

#include  <iost re a m. h >
#include  <conio.h >

const  int  MAX=20;
class  stack
{
private:

int  a[MAX];
int  top;

public:
stack();
void  push(int  x);
int  pop();
void  display();

};

stack::s tack()
{

top=- 1;
}

void  stack::push(in t  x)
{

if (top= = MAX- 1)
{

cout < < " \ nS t a ck  is  full!";
return;

}
else
{

top+ + ;
a[top] =x;

}
}

int  stack::pop()
{

if (top= = - 1)
{

cout < < " \ nS t a ck  is  empty!";
return  NULL;

}
else
{

int  item = a[ top];
top- -;
return  item;
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}
}

void  stack::display()
{

int  temp = t o p ;
while  (temp! =- 1)

cout < < " \ n" < < a [ t e m p- -];
}
void  main()
{

clrscr();
stack  s;
int  n;
s.push(10);
s.push(20);
s.push(30);
s.push(40);
s.display();
n=s.pop();
cout < < " \ nPop p e d  item:"< < n ;
n=s.pop();
cout < < " \ nPop p e d  item:"< < n ;
s.display();
getch();

}

Out p u t :

40
30
20
10
Popped  item:40
Popped  item:30
20
10

 LINKED  LIST  IMPLEMENTATION  OF  STACK

Initially,  when  the  stack  is  empty,  top  points  to  NULL.   When  an
element  is  added  using  the  push  opera t ion,  top  is  made  to  point  to  the
lates t  elemen t  whicheve r  is  added.

Push  operat io n:

Create  a  tempora ry  node  and  store  the  value  of  x  in  the  data  part
of  the  node.   Now  make  link  part  of  temp  point  to  Top  and  then  top  point
to  Temp.   That  will  make  the  new  node  as  the  topmost  element  in  the
stack.
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PUSH(x)

Info(temp)  =  x
Link(temp)  =  top
Top  =  temp
End  PUSH(  )

Pop  operat i o n

The  data  in  the  topmost  node  of  the  stack  is  first  stored  in  a
variable  called  item.   Then  a  tempora ry  pointe r  is  crea ted  to  point  to  top.
The  top  is  now  safely  moved  to  the  next  node  below  it  in  the  stack.   Temp
node  is  deleted  and  the  item  is  retu rne d .

POP(  )

If Top  =  NULL
Then

Print  “Stack  is  empty”
Return

Else
Item  =  info(top)
Temp  =  top
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Top  =  link(top)
Delete  temp
Return  item

End  if
End  POP(  )

The  following  progra m  implemen t s  the  stack  using  linked  lists.

Progr a m :

//  Stack  implemen t e d  using  linked  list

#include  <iost re a m. h >
#include  <conio.h >

class  stack
{
private:

struct  node
{

int  data;
node  *link;

};
node  *top;

public:
stack();
~s tack();
void  push(int  x);
int  pop();
void  display();

};

stack::s tack()
{

top= N ULL;
}

stack:: ~ s t a ck()
{

node  *temp;
while  (top!= N ULL)
{

temp = t o p- >link;
delete  top;
top= te m p;

}
}

void  stack::push(in t  x)
{

node  *temp;
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temp = n e w  node;
temp- >da t a = x ;
temp- >link = to p;
top= te m p;

}

int  stack::pop()
{

if (top= = N U LL)
{

cout < < " \ nS t a ck  is  empty!";
return  NULL;

}
node  *temp = t o p;
int  item = t e m p- >da t a ;
top= te m p- >link;
delete  temp;
return  item;

}

void  stack::display()
{

node  *temp = t o p;
while  (temp! = N ULL)
{

cout < < " \ n" < < t e m p- >da ta ;
temp = t e m p- >link;

}
}

void  main()
{

clrscr();
stack  s;
int  n;
s.push(10);
s.push(20);
s.push(30);
s.push(40);
s.display();
n=s.pop();
cout < < " \ nPop p e d  item:"< < n ;
n=s.pop();
cout < < " \ nPop p e d  item:"< < n ;
s.display();
getch();

}

Out p u t :

40
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30
20
10
Popped  item:40
Popped  item:30
20
10

APPLICATION  OF  STACKS

Convers io n  of  Infix  Expres s i o n  to  Postf ix  Expres s i o n

The  stacks  are  frequen t ly  used  in  evalua tion  of  arithme t ic
expressions .   An  arithme t ic  expression  consists  of  operands  and
opera to r s .   The  operands  can  be  numeric  values  or  numeric  variables.
The  opera to r s  used  in  an  arithm et ic  expression  repres e n t  the  opera t ions
like  addition,  subtrac t ion,  multiplica tion,  division  and  exponen t ia t ion.

The  arithme t ic  express ion  expresse d  in  its  normal  form  is  said  to
be  Infix  nota tion,  as  shown:

A +  B

The  above  express ion  in  prefix  form  would  be  repres en t e d  as  follows:

+  AB

The  same  expression  in  postfix  form  would  be  repres e n t e d  as  follows:

AB +  

Hence  the  given  expression  in  infix  form  is  first  conver t ed  to  postfix  form
and  then  evaluate d  to  get  the  resul ts .

The  function  to  conver t  an  expression  from  infix  to  postfix  consis ts
following  steps:

1. Every  charac t e r  of  the  expression  string  is  scanned  in  a  while  loop
until  the  end  of  the  expression  is  reached.  

2. Following  steps  are  performe d  depending  on  the  type  of  charac t e r
scanned.  

(a) If  the  charac t e r  scanne d  happens  to  be  a  space  then  that
charac t e r  is  skipped.

(b) If  the  charac t e r  scanne d  is  a  digit  or  an  alphabe t ,  it  is  added
to  the  targe t  string  pointed  to  by  t.

(c) If  the  charac t e r  scanned  is  a  closing  paren th es is  then  it  is
added  to  the  stack  by  calling  push(  ) function.

(d) If  the  charac t e r  scanne d  happens  to  be  an  opera to r ,  then
firstly,  the  topmost  element  from  the  stack  is  ret rieved.
Through  a  while  loop,  the  priorities  of  the  charac t e r  scanned
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and  the  charac t e r  popped  ‘opr’  are  compare d .   Then
following  steps  are  performe d  as  per  the  precede nc e  rule.

i. If  ‘opr’  has  higher  or  same  priority  as  the  charac t e r
scanned,  then  opr  is  added  to  the  targe t  string.

ii. If  opr  has  lower  precede nc e  than  the  charac t e r
scanned,  then  the  loop  is  termina t ed .   Opr  is  pushed
back  to  the  stack.   Then,  the  charac t e r  scanned  is  also
added  to  the  stack.

(e) If  the  charac t e r  scanned  happens  to  be  an  opening
paren the s i s ,  then  the  opera to r s  presen t  in  the  stack  are
ret rieved  through  a  loop.   The  loop  continues  till  it  does  not
encoun te r  a  closing  paren th es is .   The  opera to r s  popped,  are
added  to  the  targe t  string  pointed  to  by  t.

2. Now  the  string  pointed  by  t  is  the  required  postfix  expression.  

Progr a m :

//  Progra m  to  conver t  an  Infix  form  to  Postfix  form

#include  <iost re a m. h >
#include  <s t ring.h >
#include  <ctype.h >
#include  <conio.h >

const  int  MAX=50;

class  infix
{

private:

char  targe t[MAX],  stack[MAX];
char  *s,  *t;
int  top;

public:

infix();
void  push(cha r  c);
char  pop();
void  conver t(cha r  *str);
int  priority  (char  c);
void  show();

};

infix::infix()
{

top=- 1;
strcpy(ta rg e t ,"");
strcpy(st ack,"");
t=ta rg e t ;
s="";
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}

void  infix::push(cha r  c)
{

if (top= = MAX- 1)
cout < < " \ nS t a ck  is  full\n!";

else
{

top+ + ;
stack[top] = c ;

}
}

char  infix::pop()
{

if (top= = - 1)
{

cout < < " \ nS t a ck  is  empty\n";
return  -1;

}
else
{

char  item = s t a c k[ top];
top- -;
return  item;

}
}
void  infix::conver t(cha r  *str)
{

s=s t r ;
while(*s!= ' \0 ' )
{

if (*s= = '  '| |*s = = ' \ t ' )
{

s+ +;
continue;

}
if (isdigit(*s)  ||  isalpha(*s))
{

while(isdigit(*s)  ||  isalpha(*s))
{

*t=*s;
s+ +;
t+ + ;

}
}
if (*s= = ' ( ' )
{

push(*s);
s+ +;
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}
char  opr;
if (*s= = '* ' | |*s = = ' + ' | |* s = = ' / ' | |*s = = ' % ' | |*s = = ' - '| |*s = = ' ^ ' )
{

if (top!=- 1)
{

opr= pop();
while  (priori ty(opr) > = p r io r i ty(*s))
{

*t=opr;
t+ + ;
opr= pop();

}
push(opr);
push(*s);

}
else

push  (*s);
s+ +;

}

if (*s= = ' ) ' )
{

opr= pop();
while  ((opr)!= ' ( ')
{

*t=opr;
t+ + ;
opr= pop();

}
s+ +;

}
}

while  (top!=- 1)
{

char  opr= po p();
*t=opr;
t+ + ;

}

*t='\0 ' ;
}

int  infix::priori ty(cha r  c)
{

if (c= = ' ^ ' )
return  3;

if (c= = '* ' | | c = = ' / ' | | c = = ' % ' )
return  2;
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else
{

if (c= = ' + ' | | c = = ' - ')
return  1;

else
return  0;

}
}

void  infix::show()
{
    cout < < t a r g e t ;
}

void  main()
{

clrscr();
char  expr[MAX],  *res[MAX];
infix  q;

cout < < " \ nE n t e r  an  expression  in  infix  form:  ";
cin> > e x p r ;
q.conver t(expr);

cout < < " \ nThe  postfix  express ion  is:  ";
q.show();
getch();

}

Out p u t :

Enter  an  expression  in  infix  form:  5^2- 5

Stack  is  empty

The  postfix  expression  is:  52 ^ 5-  

Evaluat io n  of  Expres s i o n  enter e d  in  postf ix  form

The  progra m  takes  the  input  expression  in  postfix  form.   This
expression  is  scanned  charac t e r  by  charac t e r .   If  the  charac t e r  scanned
is  an  operand,  then  first  it  is  conver t ed  to  a  digit  form  and  then  it  is
pushed  onto  the  stack.   If  the  charac t e r  scanned  is  a  blank  space,  then  it
is  skipped.   If  the  charac t e r  scanne d  is  an  opera to r ,  then  the  top  two
element s  from  the  stack  are  ret rieved.   An  arithm et ic  opera t ion  is
performe d  between  the  two  operands.   The  type  of  arithme t ic  opera t ion
depends  on  the  opera to r  scanne d  from  the  string  s.   The  resul t  is  then
pushed  back  onto  the  stack.   These  steps  are  repea t e d  as  long  as  the
string  s  is  not  exhaus t ed .   Finally  the  value  in  the  stack  is  the  required
result  and  is  shown  to  the  user.

51



Progr a m :

//  Progra m  to  evaluate  an  expression  ente red  in  postfix  form

#include  <iost re a m. h >
#include  <s tdlib.h >
#include  <ma t h .h >
#include  <ctype.h >
#include  <conio.h >

const  int  MAX=50;

class  postfix
{

private:

int  stack[MAX];
int  top,  n;
char  *s;

public:

postfix();
void  push(int  item);
int  pop();
void  calcula te(cha r  *str);
void  show();

};

postfix::postfix()
{

top=- 1;
}

void  postfix::push(in t  item)
{

if (top= = MAX- 1)
cout < < e n d l < < " S t a c k  is  full";

else
{

top+ + ;
stack[top] = i t e m;

}
}

int  postfix::pop()
{

if (top= = - 1)
{

cout < < e n d l < < " S t a c k  is  empty";
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return  NULL;
}
int  data = s t a c k[ top];
top- -;
return  data;

}
void  postfix::calcula t e(cha r  *str)
{

s=s t r ;
int  n1,  n2,  n3;
while  (*s)
{

if (*s= = '  '| |*s = = ' \ t ' )
{

s+ +;
continue;

}
if (isdigit(*s))
{

n=*s- '0';
push(n);

}
else
{

n1= pop();
n2= pop();
switch(*s)
{

case  '+':
  n3=n 2 + n 1 ;
  break;

case  '- ':
  n3=n 2- n1;
  break;

case  '/':
  n3=n 2/n1;
  break;

case  '*':
  n3=n 2*n1;
  break;

case  '%':
  n3=n 2%n 1;
  break;

case  ' ^ ' :
  n3=pow(n2,  n1);
  break;

default:
  cout < < "U nk no w n  opera to r";
  exit(1);

}
push(n3);
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}
s+ +;

}
}
void  postfix::show()
{

n=pop();
cout < < "R e s u l t  is:  "< < n;

}
void  main()
{

clrscr();
char  expr[MAX];
cout  < <  "\nEnte r  postfix  expression  to  be  evalua ted  : ";
cin> > e x p r ;
postfix  q  ;
q.calcula te(exp r);
q.show();
getch();

}

Out p u t :
Enter  postfix  express ion  to  be  evaluat ed  : 53 ^ 5-
Result  is:  120

QUEUE

Que u e:   Queue  is  a  linear  data  structure  that  permits  insertion  of  new
elem en t  at  one  end  and  deletion  of  an  elemen t  at  the  other  end.   The
end  at  which  the  deletion  of  an  elem en t  take  place  is  called  front,  and
the  end  at  which  insertion  of  a  new  elemen t  can  take  place  is  called
rear.   The  deletion  or  insertion  of  elemen t s  can  take  place  only  at  the
front  or  rear  end  of  the  list  respect ively .

The  first  elemen t  that  gets  added  into  the  queue  is  the  first  one  to
get  removed  from  the  list.   Hence,  queue  is  also  refer red  to  as  First- In-
First- Out  list  (FIFO).   Queues  can  be  repres en t e d  using  both  arrays  as
well  as  linked  lists.   

ARRAY IMPLEMENTATION  OF  QUEUE

If  queue  is  implemen t e d  using  arrays,  the  size  of  the  array  should
be  fixed  maximum  allowing  the  queue  to  expand  or  shrink.    

Operat io n s  on  a  Queu e

There  are  two  common  opera t ions  one  in  a  queue.   They  are
addition  of  an  elemen t  to  the  queue  and  deletion  of  an  elemen t  from  the
queue.   Two  variables  front  and  rear  are  used  to  point  to  the  ends  of  the
queue.   The  front  points  to  the  front  end  of  the  queue  where  deletion
takes  place  and  rear  points  to  the  rear  end  of  the  queue,  where  the
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addition  of  element s  takes  place.   Initially,  when  the  queue  is  full,  the
front  and  rear  is  equal  to  -1.

Add(x)

An  element  can  be  added  to  the  queue  only  at  the  rear  end  of  the
queue.   Before  adding  an  element  in  the  queue,  it  is  checked  whethe r
queue  is  full.   If  the  queue  is  full,  then  addition  cannot  take  place.
Otherwise ,  the  element  is  added  to  the  end  of  the  list  at  the  rear  side.

ADDQ(x)

If rear  =  MAX – 1
Then

Print  “Queue  is  full”
Return

Else
Rear  =  rear  +  1
A[rear]  =  x
If front  =  -1
Then

Front  =  0
End  if

End  if
End  ADDQ(  )

Del(  )

The  del(  )  opera t ion  deletes  the  element  from  the  front  of  the
queue.   Before  deleting  and  element ,  it  is  checked  if the  queue  is  empty.
If  not  the  element  pointed  by  front  is  deleted  from  the  queue  and  front  is
now  made  to  point  to  the  next  elemen t  in  the  queue.

DELQ(  )

If front  =  -1
Then

Print  “Queue  is  Empty”
Return
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Else
Item  =  A[front]
A[front]  =  0
If front  =  rear
Then

Front  =  rear  =  -1
Else

Front  =  front  +  1
End  if
Return  item

End  if
End  DELQ(  )

Progr a m :

//  Queues  and  various  opera t ions  on  it  – Using  arrays

#include  <iost re a m. h >
#include  <conio.h >

const  int  MAX=10;
class  queue
{
private:

int  a[MAX],  front,  rear;
public:

queue();
void  addq(int  x);
int  delq();
void  display();

};

queue::que u e()
{

front = r e a r = - 1;
}

void  queue::addq(in t  x)
{

if (rear = = M AX- 1)
{

cout < < "Q u e u e  is  full!";
return;

}
rear + + ;
a[rea r] = x;
if (front = = - 1)

front = 0 ;
}

int  queue::delq()
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{
if (front = = - 1)
{

cout < < "Q u e u e  is  empty!";
return  NULL;

}
int  item = a[f ron t];
a[front] = 0 ;
if (front = = r e a r )

front = r e a r = - 1;
else

front + + ;
return  item;

}

void  queue::display()
{

if (front = = - 1)
return;

for  (int  i=front;  i<= r e a r ;  i+ +)
cout < < a [ i ] < < " \ t" ;

}

void  main()
{

clrscr();
queue  q;
q.addq(50);
q.addq(40);
q.addq(90);
q.display();
cout < < e n d l ;
int  i=q.delq();
cout < < e n d l ;
cout < < i < < "  deleted!";
cout < < e n d l ;
q.display();
i=q.delq();
cout < < e n d l ;
cout < < i < < "  deleted!";
cout < < e n d l ;
i=q.delq();
cout < < i < < "  deleted!";
cout < < e n d l ;
i=q.delq();

getch();
}

Out p u t :
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50       40       90

50  deleted!
40       90
40  deleted!
90  deleted!
Queue  is  empty!
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Unit  3
LINKED  LISTS

Linked  lists  and  arrays  are  similar  since  they  both  store  collections  of
data.  One  way  to  think  about  linked  lists  is  to  look  at  how  arrays  work
and  think  about  alterna t e  approache s .

Array is the most common data structure used to store collections of elements. Arrays are convenient
to declare and provide the easy syntax to access any element by its index number. Once the array is
set up, access to any element is convenient and fast. 

The  disadva n t a g e s  of  arrays  are:

 The  size  of  the  array  is  fixed.  Most  often  this  size  is  specified  at
compile  time.  This  makes  the  progra m m e r s  to  allocate  arrays ,
which  seems  "large  enough"  than  required .  

 Inser ting  new  elemen ts  at  the  front  is  potentially  expensive
because  existing  element s  need  to  be  shifted  over  to  make
room.

 Deleting  an  elemen t  from  an  array  is  not  possible.

Linked lists have their own strengths and weaknesses, but they happen to be strong where arrays are
weak. Generally array's allocates the memory for all its elements in one block whereas linked lists use
an entirely different strategy.

Linked  lists  allocate  memory  for  each  element  separa t e ly  and  only  when  
necessa ry.

Here  is  a  quick  review  of  the  terminology  and  rules  of  pointe r s .  The  
linked  list  code  will  depend  on  the  following  functions:

malloc ( )  is  a  system  function  which  allocates  a  block  of  memory  in  the
"heap"  and  returns  a  pointe r  to  the  new  block.  The  prototype  of  malloc()
and  other  heap  functions  are  in  stdlib.h.   malloc()  returns  NULL  if  it
cannot  fulfill  the  reques t .  It  is  defined  by:  

void *malloc (number_of_bytes) 

Since a void * is returned the C standard states that this pointer can be converted to any type.  For 
example,

char *cp;
cp = (char *) malloc (100);

Attempts to get 100 bytes and assigns the starting  address to cp. We can also use the sizeof() 
function to specify the number of bytes. For example, 

int *ip;
ip = (int *) malloc (100*sizeof(int));
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free() is the opposite of malloc(), which de-allocates memory. The argument to free() is a pointer to a
block of memory in the heap — a pointer which  was obtained by a malloc() function. The syntax is:

free (ptr);

The advantage of free() is simply memory management when we no longer need a block.

6.1. Linked  List:
 
A linked list is a non-sequential collection of data items. It is a dynamic data structure. For every data
item in a linked list, there is an associated pointer that would give the memory location of the next
data item in the linked list.

The data items in the linked list are not in consecutive memory locations. They may be anywhere, but
the accessing of these data items is easier as each data item contains the address of the next data
item.

Advanta g e s  of  linked  lists:

Linked  lists  have  many  advantage s .  Some  of  the  very  impor tan t
advanta g es  are:

1. Linked  lists  are  dynamic  data  structu r e s .  i.e.,  they  can  grow  or
shrink  during  the  execution  of  a  progra m.

2. Linked  lists  have  efficient  memory  utilization.  Here,  memory  is
not  pre- allocated .  Memory  is  allocated  wheneve r  it  is  required
and  it  is  de- allocated  (removed)  when  it  is  no  longer  needed.

3. Inser tion  and  Deletions  are  easier  and  efficient .  Linked  lists
provide  flexibility  in  inser t ing  a  data  item  at  a  specified  position
and  deletion  of  the  data  item  from  the  given  position.  

4. Many  complex  applica tions  can  be  easily  carried  out  with  linked
lists.

Disadva n t a g e s  of  linked  list s:

1. It  consumes  more  space  because  every  node  requires  a
additional  pointe r  to  store  address  of  the  next  node.

2. Searching  a  par ticula r  element  in  list  is  difficult  and  also  time
consuming.  

Types  of  Linked  Lists:

Basically  we  can  put  linked  lists  into  the  following  four  items:

1. Single  Linked  List.

2. Double  Linked  List.
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3. Circular  Linked  List.

4. Circular  Double  Linked  List.

A single  linked  list  is  one  in  which  all  nodes  are  linked  togethe r  in  some
sequen tial  manne r .  Hence,  it  is  also  called  as  linear  linked  list.  

A  double  linked  list  is  one  in  which  all  nodes  are  linked  togethe r  by
multiple  links  which  helps  in  accessing  both  the  successor  node  (next
node)  and  predeces so r  node  (previous  node)  from  any  arbit r a ry  node
within  the  list.  Therefore  each  node  in  a  double  linked  list  has  two  link
fields  (pointe r s)  to  point  to  the  left  node  (previous)  and  the  right  node
(next).  This  helps  to  traverse  in  forward  direc tion  and  backward
direction.

A circular  linked  list  is  one,  which  has  no  beginning  and  no  end.  A single
linked  list  can  be  made  a  circular  linked  list  by  simply  storing  addre ss  of
the  very  first  node  in  the  link  field  of  the  last  node.

A circular  double  linked  list  is  one,  which  has  both  the  successor  pointer
and  predec es so r  pointe r  in  the  circula r  manne r .

Compari s o n  betw e e n  array  and  linke d  list:

ARRAY LINKED  LIST

Size  of  an  array  is  fixed Size  of  a  list  is  not  fixed

Memory  is  allocated  from  stack Memory  is  allocated  from  heap

It  is  necess a ry  to  specify  the
number  of  elemen ts  during
declara t ion  (i.e.,  during  compile
time).

It  is  not  necessa ry  to  specify  the
number  of  elemen ts  during
declara t ion  (i.e.,  memory  is
allocated  during  run  time).

It  occupies  less  memory  than  a
linked  list  for  the  same  number
of  elemen ts .

It  occupies  more  memory.

Inser ting  new  elemen ts  at  the
front  is  potentially  expensive
because  existing  element s  need
to  be  shifted  over  to  make  room.

Inser ting  a  new  elemen t  at  any
position  can  be  carried  out  easily.

Deleting  an  elemen t  from  an
array  is  not  possible.

Deleting  an  elemen t  is  possible.

Applica t io n s  of  linked  list:

1. Linked  lists  are  used  to  repre se n t  and  manipula t e  polynomial.
Polynomials  are  express ion  containing  terms  with  non  zero
coefficient  and  exponen t s .  For  example:   

P(x)  =  a 0  Xn  +  a 1  Xn-1  +  …… +  a n-1  X +  a n
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2. Represe n t  very  large  number s  and  opera tions  of  the  large  numbe r  
such  as  addition,  multiplica tion  and  division.

3. Linked  lists  are  to  implemen t  stack,  queue,  trees  and  graphs .

4. Impleme n t  the  symbol  table  in  compiler  const ruc t ion

6.2. Singl e  Linked  List:

A linked list allocates space for each element separately in its own block of memory called a "node".
The list gets an overall structure by using pointers to connect all its nodes together like the links in a
chain.

Each  node  contains  two  fields;  a  "data"  field  to  store  whateve r  element ,  
and  a  "next"  field  which  is  a  pointe r  used  to  link  to  the  next  node.

Each  node  is  allocated  in  the  heap  using   malloc(),  so  the  node  memory
continues  to  exist  until  it  is  explicitly  de- allocated  using   free().  The  front
of  the  list  is  a  pointe r  to  the  “star t”  node.  A single  linked  list  is  shown  in
figure  6.2.1.

1 0 0  

1 0     2 0 0  2 0     3 0 0    3 0     4 0 0  4 0      X  

1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 2 . 1 .  S i n g l e  L i n k e d  L i s t  

 H E A P  S T A C K  

T h e  n e xt  f i e l d  o f  
t h e  l a s t  n o d e  i s  
N ULL .  

T h e  s t a r t  
p o i n t e r  
h o l d s  t h e   
a d d r e s s o f  
t h e  f ir s t  
n o d e  o f  t h e  
l i s t .  

Eac h  n o d e  
s t o r e s t h e  d a t a .  

St o r e s t h e  n e xt  
n o d e  a d d r e s s.  

The  beginning  of  the  linked  list  is  stored  in  a  " start " pointer  which  points
to  the  first  node.  The  first  node  contains  a  pointe r  to  the  second  node.
The  second  node  contains  a  pointer  to  the  third  node,  ...  and  so  on.  The
last  node  in  the  list  has  its  next  field  set  to  NULL  to  mark  the  end  of  the
list.  Code  can  access  any  node  in  the  list  by  star ting  at  the  start  and
following  the  next  pointer s .  

The  start  pointe r  is  an  ordinary  local  pointe r  variable,  so  it  is  drawn
separa t e ly  on  the  left  top  to  show  that  it  is  in  the  stack.  The  list  nodes
are  drawn  on  the  right  to  show  that  they  are  allocated  in  the  heap.

Imple m e n t a t i o n  of  Singl e  Linked  List:
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Before  writing  the  code  to  build  the  above  list,  we  need  to  crea te  a  start
node ,  used  to  crea te  and  access  other  nodes  in  the  linked  list.  The
following  structu r e  definition  will  do  (see  figure  6.2.2):

 Creating  a  structu r e  with  one  data  item  and  a  next  pointe r ,
which  will  be  pointing  to  next  node  of  the  list.  This  is  called  as
self- referen tial  structu r e .
 

 Initialise  the  star t  pointe r  to  be  NULL.

 NULL  

s t a r t  

Fi g u r e  6 . 2 . 2 .  St r uc t u r e  d e f i n it i o n ,  s i n g l e  l i n k  n o d e  a n d  e m p t y  l i s t  

E m p t y  lis t :  

st r uct  s l in k l ist   
{  

in t  d at a;  
st r uct  s l in k l ist *  n e x t ;  

} ;  
 
t y p e d ef  st r uct  s l in k l ist  no d e;  
 

            no d e * st a r t  =  N U LL;  

 

 d a t a    n e xt  n o d e :  

The  basic  operat io n s  in  a  sing l e  linke d  list  are:

 Creation.  

 Inser tion.

 Deletion.  

 Traversing.  

Creating a node for Single Linked List:

Creating a singly linked list starts with creating a node. Sufficient memory has to be allocated for
creating a node. The information is stored in the memory, allocated by using the malloc() function.
The function getnode(), is used for creating a node, after allocating memory for the structure of type
node, the information for the item (i.e., data) has to be read from the user,  set next field to  NULL and
finally returns the address of the node. Figure 6.2.3 illustrates the creation of a node for single linked
list.

no d e*  g et no d e( )  
{  
       no d e*  n e w no d e;  
       n e w no d e =  ( no d e * )  m a l lo c( s iz eo f ( no d e) ) ;  
       p r in t f ( " \ n Ent e r  d at a:  " ) ;  
       sca nf ( " % d " ,  & n e w no d e - >  d at a) ;  
       n e w no d e - >  n e x t  =  NULL;  
       r et u r n n e w no d e;  
}  

 

   1 0       X  

n e w n o d e  

1 0 0  

Fi g u r e  6 . 2 . 3 .  n e w  n o d e w it h  a  v a l u e  o f  1 0   

Creat in g  a  Sing ly  Linked  List  with  ‘n’  nu mb e r  of  node s :

The following steps are to be followed to create ‘n’ number of nodes:
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 Get  the  new  node  using  getnode().

newnode  =  getnode();

 If the list is empty, assign new node as start. 

start = newnode;
 If the list is not empty, follow the steps given below: 

 The  next  field  of  the  new  node  is  made  to  point  the  first
node  (i.e.  star t  node)  in  the  list  by  assigning  the  address  of
the  first  node.  

 The  star t  pointe r  is  made  to  point  the  new  node  by
assigning  the  address  of  the  new  node.  

 Repea t  the  above  steps  ‘n’ times.

Figure  6.2.4  shows  4  items  in  a  single  linked  list  stored  at  differen t
locations  in  memory.

1 0 0  

1 0     2 0 0  2 0     3 0 0    3 0     4 0 0  4 0      X  

1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 2 . 4 .  S i n g l e  L i n k e d  L i s t  w it h  4  n o d e s  

The  function  creat elis t(),  is  used  to  create  ‘n’ number  of  nodes:

v o id c r e at e l ist ( in t  n)  
{  
            in t  i;  
            no d e * n e w no d e;  
            no d e * t e m p ;  
            fo r ( i =  0 ;  i <  n  ;  i+ + )  
            {  
                        n e w no d e =  g et no d e( ) ;  
                        if ( st a r t  = =  N U LL)  
                        {  
                                    s t a r t  =  n e w no d e;  
                        }  
                        e ls e  
                        {  
                                    t e m p  =  st a r t ;  
                                    w h i le( t e m p  - >  n e x t  ! =  N U LL)  
                                                t e m p  =  t e m p  - >  n e x t ;  
                                    t e m p  - >  n e x t  =  n e w no d e;  
                        }  
            }  
}  
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Insert io n  of  a  Nod e:  

One of the most primitive operations that can be done in a singly linked list is the insertion of a node.
Memory is to be allocated for the new node (in a similar way that is done while creating a list) before
reading the data. The new node will contain empty data field and empty next field. The data field of
the new node is then stored with the information read from the user. The next field of the new node is
assigned to NULL. The new node can then be inserted at three different places namely: 

 Inser ting  a  node  at  the  beginning.

 Inser ting  a  node  at  the  end.

 Inser ting  a  node  at  interme dia t e  position.

Insert in g  a  node  at  the  begi n n i n g :

The  following  steps  are  to  be  followed  to  inser t  a  new  node  at  the
beginning  of  the  list:

 Get  the  new  node  using  getnode().

newnode  =  getnode();

 If the list is empty then start = newnode. 

 If the list is not empty, follow the steps given below: 

newnode  ->  next  =  star t;
start = newnode;

The  function  inser t_at_beg(),  is  used  for  inser t ing   a  node  at  the
beginning

Figure  6.2.5  shows  inser ting  a  node  into  the  single  linked  list  at  the
beginning.
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5 0 0  

1 0     2 0 0  2 0     3 0 0    3 0     4 0 0  4 0      X  
1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 2 . 5 .  I n s e r t i n g  a  n o d e  a t  t h e  b e g i n n i n g  

5      1 0 0  

5 0 0  

Insert in g  a  node  at  the  end:
 
The  following  steps  are  followed  to  inser t  a  new  node  at  the  end  of  the
list:

 Get the new node using getnode()

newnode = getnode();

 If the list is empty then start = newnode. 

 If the list is not empty follow the steps given below: 

temp  =  star t ;
while(tem p  ->  next  !=  NULL)

temp  =  temp  ->  next;
temp -> next = newnode;

The  function  inser t_at_end(),  is  used  for  inser ting   a  node  at  the  end.

Figure  6.2.6  shows  inser ting  a  node  into  the  single  linked  list  at  the  end.

1 0 0  

1 0     2 0 0  2 0     3 0 0    3 0     4 0 0  4 0    5 0 0  
1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 2 . 6 .  I n s e r t i n g  a  n o d e  a t  t h e  e n d .  

5 0      X  

5 0 0  

Insert in g  a  node  at  inter m e d i a t e  posi t io n:  

The following steps are followed, to insert a new node in an intermediate position in the list: 

 Get  the  new  node  using  getnode().

newnode  =  getnode();
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 Ensure  that  the  specified  position  is  in  between  first  node  and
last  node.  If  not,  specified  position  is  invalid.  This  is  done  by
countnode()  function.  

 
 Store  the  star ting  addres s  (which  is  in  star t  pointe r)  in  temp  and

prev  pointe r s .  Then  travers e  the  temp  pointe r  upto  the  specified
position  followed  by  prev  pointe r .

 After  reaching  the  specified  position,  follow  the  steps  given
below:  

prev  ->  next  =  newnode;
newnode  ->  next  =  temp;

 Let  the  interme dia t e  position  be  3.

The  function  inser t_at_mid(),  is  used  for  inser ting   a  node  in  the
interme dia t e  position.

Figure 6.2.7 shows inserting a node into the single linked list at a specified intermediate position other
than beginning and end.

1 0 0  

1 0     2 0 0  2 0     5 0 0    3 0     4 0 0  4 0     X  
1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 2 . 7 .  I n s e r t i n g  a  n o d e  a t  a n  i n t e r m e d i a t e  p o s it i o n .  

5 0     3 0 0  

5 0 0  

t e m p  p r ev  

n e w  n o d e  

Delet i o n  of  a  nod e:
 
Another  primitive  opera t ion  that  can  be  done  in  a  singly  linked  list  is  the
deletion  of  a  node.  Memory  is  to  be  released  for  the  node  to  be  deleted.  A
node  can  be  deleted  from  the  list  from  three  differen t  places  namely.  

 Deleting  a  node  at  the  beginning.

 Deleting  a  node  at  the  end.

 Deleting  a  node  at  interm e dia t e  position.

Delet i n g  a  node  at  the  begin n i n g :  
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The  following  steps  are  followed,  to  delete  a  node  at  the  beginning  of  the
list:  

 If list  is  empty  then  display  ‘Empty  List’  message.

 If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  star t ;
star t  =  star t  ->  next;
free(tem p);

The function delete_at_beg(), is used for deleting the first node in the list.

Figure 6.2.8 shows deleting a node at the beginning of a single linked list. 

2 00  

1 0    20 0  2 0    3 00    30    4 0 0  4 0    X  
1 0 0  20 0  3 00  40 0  

st a rt  

Fig ur e 6. 2. 8.  De le t in g a no d e at  t h e b eg in n ing.  

t e mp  

Delet i n g  a  node  at  the  end:  
 
The  following  steps  are  followed  to  delete  a  node  at  the  end  of  the  list:  

 If list  is  empty  then  display  ‘Empty  List’  message.

 If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  prev  =  star t ;
while(tem p  ->  next  !=  NULL)
{

prev  =  temp;
temp  =  temp  ->  next;

}
prev  ->  next  =  NULL;
free(tem p);

The  function  delete_at_las t(),  is  used  for  deleting  the  last  node  in  the  list.

Figure  6.2.9  shows  deleting  a  node  at  the  end  of  a  single  linked  list.
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1 0 0  

1 0     2 0 0  2 0     3 0 0    3 0      X  4 0      X  
1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 2 . 9 .  De l e t i n g  a  n o d e  a t  t h e  e n d .  

Delet i n g  a  node  at  Inter m e d i a t e  posi t io n:  

The  following  steps  are  followed,  to  delete  a  node  from  an  interm e dia t e
position  in  the  list  (List  must  contain  more  than  two  node).

 If list  is  empty  then  display  ‘Empty  List’  message

 If the  list  is  not  empty,  follow  the  steps  given  below.

if(pos  >  1  &&  pos  <  nodect r)
{

temp  =  prev  =  star t ;
ctr  =  1;
while(ct r  <  pos)
{

prev  =  temp;
temp  =  temp  ->  next;
ctr+ + ;

}
prev  ->  next  =  temp  ->  next;
free(tem p);
printf("\n  node  deleted. .");

}
The  function  delete_at_mid(),  is  used  for  deleting  the  interme dia t e  node
in  the  list.  

Figure 6.2.10 shows deleting a node at a specified intermediate position other than beginning and
end from a single linked list.

1 0 0  

1 0    3 0 0  2 0    3 0 0    3 0    4 0 0  4 0     X  
1 0 0  2 0 0  3 0 0  4 0 0  

st a rt  

Fig ur e 6. 2. 1 0.  De le t i n g a n o d e at  a n i nt er me d ia t e p o s it i o n.  

Travers a l  and  displayin g  a  list  (Left  to  Right ):
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To  display  the  informa tion,  you  have  to  traverse  (move)  a  linked  list,
node  by  node  from  the  first  node,  until  the  end  of  the  list  is  reached.
Traversing  a  list  involves  the  following  steps:  

 Assign  the  addre ss  of  star t  pointer  to  a  temp  pointe r .

 Display  the  information  from  the  data  field  of  each  node.

The  function  traverse ()  is  used  for  traversing  and  displaying  the
information  stored  in  the  list  from  left  to  right.

v o id t r a v e rs e( )  
{  
            no d e * t e m p ;  
            t e m p  =  st a r t ;  
            p r in t f ( " \ n  Th e co nt e n t s o f  L ist  ( Lef t  t o  Rig h t ) :  \ n " ) ;  
            if ( st a r t  = =  N U LL )  
                        p r in t f ( " \ n  Em p t y  L ist " ) ;  
            e ls e  
            w h i le( t e m p  ! =  N U LL)  
            {  
                        p r in t f ( " % d  - > " ,  t e m p  - >  d at a) ;  
                        t e m p  =  t e m p  - >  n e x t ;  
            }  
            p r in t f ( " X" ) ;  
}  

Alternat ive ly  there  is  another  way  to  traverse  and  display  the
information.  That  is  in  reverse  order .  The  function  rev_traver se () ,  is  used
for  traversing  and  displaying  the  informa tion  stored  in  the  list  from  right
to  left.  

v o id r e v _ t r a v e rs e( no d e * st )  
{  
            if ( st  = =  N U LL)  
            {  
                        r e t u r n ;  
            }  
            e ls e  
            {  
                        r e v _ t r a v e rs e( st  - >  n e x t ) ;  
                        p r in t f ( " % d  - > " ,  st  - >  d at a) ;  
            }  
}  

Countin g  the  Num b e r  of  Nod e s:

The  following  code  will  count  the  number  of  nodes  exist  in  the  list  using
recursion .
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in t  co u nt no d e( no d e * st )  
{  
            if ( st  = =  N U LL)  
                        r e t u r n  0 ;  
            e ls e  
                        r e t u r n( 1  +  co u nt no d e( st  - >  n e x t ) ) ;  
}  

6.3. A Complete Source Code for the Implementation of Single Linked List:

#  include  <stdio.h >
#  include  <conio.h >
#  include  <stdlib.h >

struct  slinklist
{

int  data;
struct  slinklist  *next;

};

typedef  struct  slinklist  node;

node  *star t  =  NULL;

int  menu()
{

int  ch;
clrscr();
printf("\n  1.Crea t e  a  list  ");
printf("\n- -------------------------");
printf("\n  2.Inser t  a  node  at  beginning  ");
printf("\n  3.Inser t  a  node  at  end");
printf("\n  4.Inser t  a  node  at  middle");
printf("\n- -------------------------");
printf("\n  5.Delete  a  node  from  beginning");
printf("\n  6.Delete  a  node  from  Last");
printf("\n  7.Delete  a  node  from  Middle");
printf("\n- -------------------------");
printf("\n  8.Traver se  the  list  (Left  to  Right)");
printf("\n  9.Traver se  the  list  (Right  to  Left)");
 printf("\n- -------------------------");
printf("\n  10.  Count  nodes  ");
printf("\n  11.  Exit  ");
printf("\n\n  Enter  your  choice:  ");
scanf("%d",&ch);
return  ch;

}

node*  getnode()
{

node  * newnode;
newnode  =  (node  *) malloc(sizeof(node));
printf("\n  Enter  data:  ");
scanf("%d",  &newnode  ->  data);
newnode  ->  next  =  NULL;
return  newnode;

}

int  countnode(node  *ptr)
{

int  count = 0 ;
while(pt r  !=  NULL)
{

count + + ;
ptr  =  ptr  ->  next;
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}
return  (count);

}

void  creat elis t(in t  n)
{

int  i;
node  *newnode;
node  *temp;
for(i  =  0;  i <  n;  i++)
{

newnode  =  getnode();
if(star t  = =  NULL)
{

star t  =  newnode;
}
else
{

temp  =  star t ;
while(temp  ->  next  !=  NULL)

temp  =  temp  ->  next;
temp  ->  next  =  newnode;

}
}

}

void  traverse()
{

node  *temp;
temp  =  star t ;
printf("\n  The  conten ts  of  List  (Left  to  Right):  \n");
if(star t  = =  NULL)
{

printf("\n  Empty  List");
return ;

}
else

while(temp  !=  NULL)
{

printf("%d- ->",  temp  ->  data);
temp  =  temp  ->  next;

}
printf("  X ");

}

void  rev_traver se(node  *star t)
{

if(star t  = =  NULL)
{

return ;
}
else
{

rev_traver se(s t a r t  ->  next);
printf("%d  -->",  star t  ->  data);

}
}

void  inser t_at_beg()
{

node  *newnode;
newnode  =  getnode();
if(star t  = =  NULL)
{

star t  =  newnode;
}
else
{

newnode  ->  next  =  star t ;
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star t  =  newnode;
}

}

void  inser t_at_end()
{

node  *newnode,  *temp;
newnode  =  getnode();
if(star t  = =  NULL)
{

star t  =  newnode;
}
else
{

temp  =  star t ;
while(temp  ->  next  !=  NULL)

temp   =  temp  ->  next;
temp  ->  next  =  newnode;

}
}

void  inser t_at_mid()
{

node  *newnode,  *temp,  *prev;
int   pos,  nodec t r ,  ctr  =  1;
newnode  =  getnode();
printf("\n  Enter  the  position:  ");
scanf("%d",  &pos);
nodect r  =  countnode(s t a r t ) ;
if(pos  >  1  &&  pos  <  nodect r)
{

temp  =  prev  =  star t ;
while(ctr  <  pos)
{

prev  =  temp;
temp  =  temp  ->  next;
ctr+ + ;

}
prev  ->  next  =  newnode;
newnode  ->  next  =  temp;

}
else
{

printf("posi tion  %d  is  not  a  middle  position",  pos);
}

}

void  delete_a t_beg()
{

node  *temp;
if(star t  = =  NULL)
{

printf("\n  No  nodes  are  exist. .");
return  ;

}
else
{

temp  =  star t ;
star t  =  temp  ->  next;
free(temp);
printf("\n  Node  deleted  ");

}
}

void  delete_a t_las t()
{

node  *temp,  *prev;
if(star t  = =  NULL)
{
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printf("\n  Empty  List..");
return  ;

}
else
{

temp  =  star t ;
prev  =  star t;
while(temp  ->  next  !=  NULL)
{

prev  =  temp;
temp  =  temp  ->  next;

}
prev  ->  next  =  NULL;
free(temp);
printf("\n  Node  deleted  ");

}
}

void  delete_a t_mid()
{

int  ctr  =  1,  pos,  nodec t r ;
node  *temp,  *prev;
if(star t  = =  NULL)
{

printf("\n  Empty  List..");
return  ;

}
else
{

printf("\n  Enter  position  of  node  to  delete:  ");
scanf("%d",  &pos);
nodect r  =  countnode(s t a r t ) ;
if(pos  >  nodec t r)
{

printf("\nThis  node  doesnot  exist");

}
if(pos  >  1  &&  pos  <  nodect r)
{

temp  =  prev  =  star t ;
while(ctr  <  pos)
{

prev  =  temp;
temp  =  temp  ->  next;
ctr  + +;

}
prev  ->  next  =  temp  ->  next;
free(temp);
printf("\n  Node  deleted . .");

}
else
{

printf("\n  Invalid  position..");
getch();

}

}
}

void  main(void)
{

int   ch,  n;
clrscr();
while(1)
{

ch  =  menu();
switch(ch)
{
case  1:
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if(star t  = =  NULL)
{

printf("\n  Number  of  nodes  you  want  to  crea te :  ");
scanf("%d",  &n);
creat elis t(n);
printf("\n  List  crea ted . .");

}
else

printf("\n  List  is  already  creat ed . .");
break;

case  2:
inser t_at_beg();
break;

case  3:
inser t_at_end();
break;

case  4:
inser t_at_mid();
break;

case  5:
delete_at_beg();
break;

case  6:
delete_at_las t();
break;

case  7:
delete_at_mid();
break;

case  8:
traverse();
break;

case  9:
printf("\n  The  conten ts  of  List  (Right  to  Left):  \n");
rev_traver se(s t a r t ) ;
printf("  X ");
break;

case  10:
printf("\n  No  of  nodes  : %d  ",  countnode(s t a r t ) );
break;

case  11  :
exit(0);

}
getch();

}
}

6.4. Doubl e  Linked  List:

A double linked list is a two-way list in which all nodes will have two links. This helps in accessing
both successor node and predecessor node from the given node position. It provides bi-directional
traversing. Each node contains three fields: 

 Left  link.  
 Data.  
 Right  link.  

The  left  link  points  to  the  predece sso r  node  and  the  right  link  points  to  
the  successor  node.  The  data  field  stores  the  required  data.  

Many  applica tions  require  searching  forward  and  backward  thru  nodes  
of  a  list.  For  example  searching  for  a  name  in  a  telephone  directory  
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would  need  forward  and  backward  scanning  thru  a  region  of  the  whole  
list.

The  basic  opera t ions  in  a  double  linked  list  are:

 Creation.
 Inser tion.
 Deletion.
 Traversing.

A double  linked  list  is  shown  in  figure  6.3.1.

1 0 0  

 X      1 0     2 0 0   2 0 0     3 0      X  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 3 . 1 .  Do u b l e  L i n k e d  L i s t  

 H E A P  S T A C K  

T h e  r i g h t  f i e l d  o f  
t h e  l a s t  n o d e  i s  
N ULL .  

T h e  s t a r t  
p o i n t e r  
h o l d s  t h e   
a d d r e s s o f  
t h e  f ir s t  
n o d e  o f  t h e  
l i s t .  

St o r e s t h e  d a t a .  St o r e s t h e  n e xt  
n o d e  a d d r e s s.  

 1 0 0     2 0      3 0 0  

St o r e s t h e  
p r ev i o u s n o d e  
a d d r e s s.  

The  beginning  of  the  double  linked  list  is  stored  in  a  "start "  pointe r
which  points  to  the  first  node.  The  first  node’s  left  link  and  last  node’s
right  link  is  set  to  NULL.  

The  following  code  gives  the  structu r e  definition:

 NULL  

s t a r t  

Fi g u r e  6 . 4 . 1 .  St r uc t u r e  d e f i n it i o n ,  d o u b l e  l i n k  n o d e  a n d  e m p t y  l i s t  

E m p t y  lis t :  

 st r uct  d l in k l ist  
 {  
            st r uct  d l in k l ist  * le f t ;  
            in t  d at a;  
            st r uct  d l in k l ist  * r ig ht ;  
 
 } ;  
 
 t y p e d ef  st r uct  d l in k l ist  no d e;  
 no d e * st a r t  =  N U LL;  

 l e f t      d a t a     r i g h t  n o d e :  

Creat in g  a  nod e  for  Doubl e  Linked  List:

Creating  a  double  linked  list  star ts  with  creating  a  node.  Sufficient
memory  has  to  be  allocated  for  crea t ing  a  node.  The  information  is
stored  in  the  memory,  allocated  by  using  the  malloc()  function.  The
function  getnode(),  is  used  for  crea ting  a  node,  after  allocating  memory
for  the  structu r e  of  type  node,  the  information  for  the  item  (i.e.,  data)  has
to  be  read  from  the  user  and  set  left  field  to  NULL  and  right  field  also  set
to  NULL  (see  figure  6.2.2).
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no d e*  g et no d e( )  
{  
       no d e*  n e w no d e;  
       n e w no d e =  ( no d e * )  m a l lo c( s iz eo f ( no d e) ) ;  
       p r in t f ( " \ n  Ent e r  d at a:  " ) ;  
       sca nf ( " % d " ,  & n e w no d e - >  d at a) ;  
       n e w no d e - >  le f t  =  N U LL;  
       n e w no d e - >  r ig ht  =  N U LL;  
       r e t u r n n e w no d e;  
}  

 

 X      1 0       X  

n e w n o d e  

1 0 0  

Fi g u r e  6 . 4 . 2 .  n e w  n o d e  w it h  a  v a l u e  o f  1 0   

Creat in g  a  Doubl e  Linked  List  with  ‘n’  nu mb e r  of  node s:

The following steps are to be followed to create ‘n’ number of nodes:

 Get  the  new  node  using  getnode().

newnode  =ge tnod e();

  If the list is empty then start = newnode. 

 If the list is not empty, follow the steps given below: 

 The  left  field  of  the  new  node  is  made  to  point  the
previous  node.  

 The  previous  nodes  right  field  must  be  assigned  with
address  of  the  new  node.  

 Repea t  the  above  steps  ‘n’ times.

The  function  creat elis t(),  is  used  to  create  ‘n’ number  of  nodes:

v o id c r e at e l ist ( in t  n)  
{  
            in t  i;  
            no d e * n e w no d e;  
            no d e * t e m p ;  
            fo r ( i =  0 ;  i <  n ;  i+ + )  
            {  
                        n e w no d e =  g et no d e( ) ;  
                        if ( st a r t  = =  N U LL)  
                        {  
                                    st a r t  =  n e w no d e;  
                        }  
                        e ls e  
                        {  
                                    t e m p  =  st a r t ;  
                                    w h i le( t e m p  - >  r ig ht )  
                                                t e m p  =  t e m p  - >  r ig ht ;  
                                    t e m p  - >  r ig ht  =  n e w no d e;  
                                    n e w no d e - >  le f t  =  t e m p ;  
                        }  
            }  
}  
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Figure  6.4.3  shows  3  items  in  a  double  linked  list  stored  at  differen t
locations.

1 0 0  

 X      1 0     2 0 0   2 0 0     3 0      X  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 4 . 3 .  Do u b l e  L i n k e d  L i s t  w it h  3  n o d e s  

 1 0 0     2 0      3 0 0  

Insert in g  a  node  at  the  begi n n i n g :

The  following  steps  are  to  be  followed  to  inser t  a  new  node  at  the
beginning  of  the  list:

 Get  the  new  node  using  getnode().

newnode = g e t n o d e();

 If the list is empty then start = newnode.

  If the list is not empty, follow the steps given below: 

newnode  ->  right  =  star t ;
star t  ->  left  =  newnode;
star t  =  newnode;

The  function  dbl_inser t_beg(),  is  used  for  inser ting  a  node  at  the
beginning.  Figure  6.4.4  shows  inser ting  a  node  into  the  double  linked  list
at  the  beginning.

4 0 0  

4 0 0     1 0     2 0 0   2 0 0     3 0      X  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g ur e  6 . 4 . 4 .  I n s er t i n g  a  n o d e  a t  t h e  b e g i n n i n g  

 1 0 0     2 0      3 0 0  

 X      4 0     1 0 0  

4 0 0  

Insert in g  a  node  at  the  end:

The  following  steps  are  followed  to  inser t  a  new  node  at  the  end  of  the
list:

 Get the new node using getnode()
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newnode=getnode();

 If the list is empty then start = newnode. 

 If the list is not empty follow the steps given below: 

temp  =  star t ;
while(tem p  ->  right  !=  NULL)

temp  =  temp  ->  right;
temp  ->  right  =  newnode;
newnode  ->  left  =  temp;

The  function  dbl_inser t_end(),  is  used  for  inser t ing   a  node  at  the  end.
Figure  6.4.5  shows  inser ting  a  node  into  the  double  linked  list  at  the  end.

1 0 0  

X     1 0       2 0 0   2 0 0    3 0     4 0 0  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 4 . 5 .  I n s e r t i n g  a  n o d e a t  t h e  e n d  

 1 0 0    2 0      3 0 0  

3 0 0     4 0       X     

4 0 0  

Insert in g  a  node  at  an  inter m e d i a t e  posi t io n:

The following steps are followed, to insert a new node in an intermediate position in the list: 

 Get  the  new  node  using  getnode().

newnode = g e t n o d e();

 Ensure  that  the  specified  position  is  in  between  first  node  and
last  node.  If  not,  specified  position  is  invalid.  This  is  done  by
countnode()  function.  

 
 Store  the  star ting  addres s  (which  is  in  star t  pointe r)  in  temp  and

prev  pointe r s .  Then  travers e  the  temp  pointe r  upto  the  specified
position  followed  by  prev  pointe r .

 After  reaching  the  specified  position,  follow  the  steps  given
below:  

newnode  ->  left  =  temp;
newnode  ->  right  =  temp  ->  right;
temp  ->  right  ->  left  =  newnode;
temp  ->  right  =  newnode;
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The  function  dbl_inser t_mid(),  is  used  for  inser ting   a  node  in  the
interme dia t e  position.  Figure  6.4.6  shows  inser ting  a  node  into  the
double  linked  list  at  a  specified  interme dia t e  position  other  than
beginning  and  end.

1 0 0  

X      1 0      4 0 0  
 4 0 0     2 0     3 0 0  

1 0 0  

4 0 0  

2 0 0  

st a r t  

Fi g u r e  6 . 4 . 6 .  I n s e r t i n g  a  n o d e  a t  a n  i n t er m e d i a t e  p o s it i o n  

 1 0 0     4 0      2 0 0  

2 0 0    3 0       X     

3 0 0  

Delet i n g  a  node  at  the  begin n i n g :

The  following  steps  are  followed,  to  delete  a  node  at  the  beginning  of  the
list:  

 If list  is  empty  then  display  ‘Empty  List’  message.

 If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  star t ;
star t  =  star t  ->  right;
star t  ->  left  =  NULL;
free(tem p);

The  function  dbl_delete_beg(),  is  used  for  deleting  the  first  node  in  the
list.  Figure  6.4.6  shows  deleting  a  node  at  the  beginning  of  a  double
linked  list.

2 0 0  

 X      1 0     2 0 0   2 0 0     3 0      X  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 4 . 6 .  De l e t i n g  a  n o d e  a t  b e g i n n i n g  

  X       2 0     3 0 0  

Delet i n g  a  node  at  the  end:

The  following  steps  are  followed  to  delete  a  node  at  the  end  of  the  list:  
 If list  is  empty  then  display  ‘Empty  List’  message

  If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  star t ;
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while(tem p  ->  right  !=  NULL)
{

temp  =  temp  ->  right;
}
temp  ->  left  ->  right  =  NULL;
free(tem p);

The  function  dbl_delete_las t(),  is  used  for  deleting  the  last  node  in  the
list.  Figure  6.4.7  shows  deleting  a  node  at  the  end  of  a  double  linked  list.

1 0 0  

 X      1 0     2 0 0   2 0 0     3 0      X  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 4 . 7 .  De l e t i n g  a  n o d e  a t  t h e  e n d  

 1 0 0      2 0      X  

Delet i n g  a  node  at  Inter m e d i a t e  posi t io n:

The  following  steps  are  followed,  to  delete  a  node  from  an  interm e dia t e
position  in  the  list  (List  must  contain  more  than  two  nodes).

 If list  is  empty  then  display  ‘Empty  List’  message.

 If the  list  is  not  empty,  follow  the  steps  given  below:

 Get  the  position  of  the  node  to  delete.

 Ensure  that  the  specified  position  is  in  betwee n  first  node
and  last  node.  If not,  specified  position  is  invalid.  

 Then  perform  the  following  steps:

if(pos  >  1  &&  pos  <  nodect r)
{

temp  =  star t ;
i =  1;
while(i  <  pos)
{

temp  =  temp  ->  right;
i+ +;

}
temp  ->  right  ->  left  =  temp  ->  left;
temp  ->  left  ->  right  =  temp  ->  right;
free(tem p);
printf("\n  node  deleted. .");

}
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The function delete_at_mid(), is used for deleting the intermediate node in the list. Figure 6.4.8 shows
deleting a node at a specified intermediate position other than beginning and end from a double
linked list.

1 0 0  

 X      1 0     3 0 0   1 0 0     3 0      X  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 4 . 8  De l e t i n g  a  n o d e  a t  a n  i n t e r m e d i a t e  p o s it i o n  

 1 0 0     2 0      3 0 0  

Travers a l  and  displayin g  a  list  (Left  to  Right ):
 
To  display  the  information,  you  have  to  traverse  the  list,  node  by  node
from  the  first  node,  until  the  end  of  the  list  is  reache d.  The  function
traverse_lef t_right ()  is  used  for  traversing  and  displaying  the  information
stored  in  the  list  from  left  to  right .

The  following  steps  are  followed,  to  traverse  a  list  from  left  to  right:

 If list  is  empty  then  display  ‘Empty  List’  message.
 If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  star t ;
while(tem p  !=  NULL)

    {
print   temp  ->  data;
temp  =  temp  ->  right;

    }

Travers a l  and  displayin g  a  list  (Right  to  Left):

To  display  the  informa tion  from  right  to  left,  you  have  to  traverse  the  list,
node  by  node  from  the  first  node,  until  the  end  of  the  list  is  reached.  The
function  traverse_right_lef t ()  is  used  for  traversing  and  displaying  the
information  stored  in  the  list  from  right  to  left.  

The  following  steps  are  followed,  to  traverse  a  list  from  right  to  left:

 If list  is  empty  then  display  ‘Empty  List’  message.

 If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  star t ;
               while(tem p  ->  right  !=  NULL)

    temp  =  temp  ->  right;
               while(tem p  !=  NULL)
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    {
print  temp  ->  data;
temp  =  temp  ->  left;

    }

Countin g  the  Num b e r  of  Nod e s:

The  following  code  will  count  the  number  of  nodes  exist  in  the  list  (using
recursion).

in t  co u nt no d e( no d e * st a r t )  
{  
            if ( st a r t  = =  N U LL)  
                        r e t u r n  0 ;  
            e ls e  
                        r e t u r n( 1  +  co u nt no d e( st a r t  - > r ig h t  ) ) ;  
}  

6.5. A Complete Source Code for the Implementation of Double Linked List:
 

#include  <s tdio.h >
#include  <s tdlib.h >
#include  <conio.h >

struct  dlinklist
{

struct  dlinklist  *left;
int  data;
struct  dlinklist  *right;

};

typedef  struct  dlinklist  node;
node  *star t  =  NULL;

node*  getnode()
{

node  * newnode;
newnode  =  (node  *) malloc(sizeof(node));
printf("\n  Enter  data:  ");
scanf("%d",  &newnode  ->  data);
newnode  ->  left  =  NULL;
newnode  ->  right  =  NULL;
return  newnode;

}

int  countnode(node  *star t)
{

if(star t  = =  NULL)
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return  0;
else

return  1  +  countnode(s t a r t  ->  right);
}

int  menu()
{

int  ch;
clrscr();
printf("\n  1.Crea t e");
printf("\n- -----------------------------");
printf("\n  2.  Inser t  a  node  at  beginning  ");
printf("\n  3.  Inser t  a  node  at  end");
printf("\n  4.  Inser t  a  node  at  middle");
printf("\n- -----------------------------");
printf("\n  5.  Delete  a  node  from  beginning");
printf("\n  6.  Delete  a  node  from  Last");
printf("\n  7.  Delete  a  node  from  Middle");
printf("\n- -----------------------------");
printf("\n  8.  Traverse  the  list  from  Left  to  Right  ");
printf("\n  9.  Traverse  the  list  from  Right  to  Left  ");

   printf("\n- -----------------------------");
printf("\n  10.Count  the  Number  of  nodes  in  the  list");
printf("\n  11.Exit  ");
printf("\n\n  Enter  your  choice:  ");
scanf("%d",  &ch);
return  ch;

}

void  creat elis t(in t  n)
{

int  i;
node  *newnode;
node  *temp;
for(i  =  0;  i <  n;  i++)
{

newnode  =  getnode();
if(star t  = =  NULL)

star t  =  newnode;
else
{

temp  =  star t ;
while(temp  ->  right)

temp  =  temp  ->  right;
temp  ->  right  =  newnode;
newnode  ->  left  =  temp;

}
}

}

void  traverse_left_to_right()
{

node  *temp;
temp  =  star t ;
printf("\n  The  conten ts  of  List:  ");
if(star t  = =  NULL  )

printf("\n  Empty  List");
else
while(temp  !=  NULL)
{

printf("\t  %d  ",  temp  ->  data);
temp  =  temp  ->  right;

}
}

void  traverse_righ t_to_left()
{
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node  *temp;
temp  =  star t ;
printf("\n  The  conten ts  of  List:  ");
if(star t  = =  NULL)

printf("\n  Empty  List");
else
while(temp  ->  right  !=  NULL)

temp  =  temp  ->  right;
while(temp  !=  NULL)
{

printf("\t%d",  temp  ->  data);
temp  =  temp  ->  left;

}
}

void  dll_inser t_beg()
{

node  *newnode;
newnode  =  getnode();
if(star t  = =  NULL)

star t  =  newnode;
else
{

newnode  ->  right  =  star t;
star t  ->  left  =  newnode;
star t  =  newnode;

}
}

void  dll_inser t_end()
{

node  *newnode,  *temp;
newnode  =  getnode();
if(star t  = =  NULL)

star t  =  newnode;
else
{

temp  =  star t ;
while(temp  ->  right  !=  NULL)

temp  =  temp  ->  right;
temp  ->  right  =  newnode;
newnode  ->  left  =  temp;

}
}

void  dll_inser t_mid()
{

node  *newnode,*tem p;
int  pos,  nodect r ,  ctr  =  1;
newnode  =  getnode();
printf("\n  Enter  the  position:  ");
scanf("%d",  &pos);
nodect r  =  countnode(s t a r t ) ;
if(pos  - nodec t r  > =  2)
{

printf("\n  Position  is  out  of  range. .");
return ;

}
if(pos  >  1  &&  pos  <  nodect r)
{

temp  =  star t ;
while(ctr  <  pos  - 1)
{

temp  =  temp  ->  right;
ctr+ + ;

}
newnode  ->  left  =  temp;
newnode  ->  right  =  temp  ->  right;
temp  ->  right  ->  left  =  newnode;
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temp  ->  right  =  newnode;
}
else

printf("posi tion  %d  of  list  is  not  a  middle  position  ", pos);
}

void  dll_delete_beg()
{

node  *temp;
if(star t  = =  NULL)
{

printf("\n  Empty  list");
getch();
return  ;

}
else
{

temp  =  star t ;
star t  =  star t  ->  right;
star t  ->  left  =  NULL;
free(temp);

}
}

void  dll_delete_last()
{

node  *temp;
if(star t  = =  NULL)
{

printf("\n  Empty  list");
getch();
return  ;

}
else
{

temp  =  star t ;
while(temp  ->  right  !=  NULL)

temp  =  temp  ->  right;
temp  ->  left  ->  right  =  NULL;
free(temp);
temp  =  NULL;

}
}

void  dll_delete_mid()
{

int  i =  0,  pos,  nodec t r ;
node  *temp;
if(star t  = =  NULL)
{

printf("\n  Empty  List");
getch();
return ;

}
else
{

printf("\n  Enter  the  position  of  the  node  to  delete:  ");
scanf("%d",  &pos);
nodect r  =  countnode(s t a r t ) ;
if(pos  >  nodec t r)
{

printf("\nthis  node  does  not  exist");
getch();
return ;

}
if(pos  >  1  &&  pos  <  nodect r)
{

temp  =  star t ;
i =  1;
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while(i  <  pos)
{

temp  =  temp  ->  right;
i++;

}
temp  ->  right  ->  left  =  temp  ->  left;
temp  ->  left  ->  right  =  temp  ->  right;
free(temp);
printf("\n  node  deleted . .");

}
else
{

printf("\n  It  is  not  a  middle  position..");
getch();

}
}

}

void  main(void)
{

int  ch,  n;
clrscr();
while(1)
{

ch  =  menu();
switch(  ch)
{

case  1  :
printf("\n  Enter  Number  of  nodes  to  creat e:  ");
scanf("%d",  &n);
creat elis t(n);
printf("\n  List  crea ted . .");
break;

case  2  :
dll_inser t_beg();
break;

case  3  :
dll_inser t_end();
break;

case  4  :
dll_inser t_mid();
break;

case  5  :
dll_delet e_beg();
break;

case  6  :
dll_delet e_last();
break;

case  7  :
dll_delet e_mid();
break;

case  8  :
traverse_left_to_right();
break;

case  9  :
traverse_righ t_to_left();
break;

case  10  :
printf("\n  Number  of  nodes:  %d",  countnode(s t a r t ) );
break;

case  11:
exit(0);

}
getch();

}
}
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6.6. Circular  Singl e  Linked  List:

It  is  just  a  single  linked  list  in  which  the  link  field  of  the  last  node  points
back  to  the  addre ss  of  the  first  node.  A  circular  linked  list  has  no
beginning  and  no  end.  It  is  necess a ry  to  establish  a  special  pointe r  called
start  pointe r  always  pointing  to  the  first  node  of  the  list.  Circula r  linked
lists  are  frequen tly  used  instead  of  ordina ry  linked  list  because  many
opera t ions  are  much  easier  to  implemen t .  In  circular  linked  list  no  null
pointe rs  are  used,  hence  all  pointe r s  contain  valid  address .  

A circula r  single  linked  list  is  shown  in  figure  6.6.1.

1 0 0  

1 0     2 0 0  2 0     3 0 0    3 0     4 0 0  4 0    1 0 0    

1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 6 . 1 .  C ir c u l a r  S i n g l e  L i n k e d  L i s t  

The  basic  opera t ions  in  a  circula r  single  linked  list  are:

 Creation.  
 Inser tion.
 Deletion.  
 Traversing.  

Creat in g  a  circular  sing l e  Linked  List  with  ‘n’  numb er  of  node s:

The following steps are to be followed to create ‘n’ number of nodes:

 Get  the  new  node  using  getnode().

newnode  =  getnode();

 If the list is empty, assign new node as start. 

start = newnode;

 If the list is not empty, follow the steps given below: 

temp  =  star t ;
while(tem p  ->  next  !=  NULL)

temp  =  temp  ->  next;
temp  ->  next  =  newnode;

 Repea t  the  above  steps  ‘n’ times.
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 newnode  ->  next  =  star t;

The  function  creat elis t(),  is  used  to  create  ‘n’ number  of  nodes:

Insert in g  a  node  at  the  begi n n i n g :

The  following  steps  are  to  be  followed  to  inser t  a  new  node  at  the
beginning  of  the  circula r  list:

 Get  the  new  node  using  getnode().

newnode  =  getnode();

 If the list is empty, assign new node as start. 

star t  =  newnode;
newnode  ->  next  =  star t;

 If the list is not empty, follow the steps given below: 

last  =  star t;
while(las t  ->  next  !=  star t)

last  =  last  ->  next;
newnode  ->  next  =  star t;
star t  =  newnode;
last  ->  next  =  star t ;

The  function  cll_inser t_beg(),  is  used  for  inser ting   a  node  at  the
beginning.  Figure  6.6.2  shows  inser ting  a  node  into  the  circula r  single
linked  list  at  the  beginning.

5 0 0  

1 0     2 0 0  2 0     3 0 0    3 0     4 0 0  4 0     5 0 0  
1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 6 . 2 .  I n s e r t i n g  a  n o d e  a t  t h e  b e g i n n i n g  

5      1 0 0  

5 0 0  

Insert in g  a  node  at  the  end:

The  following  steps  are  followed  to  inser t  a  new  node  at  the  end  of  the
list:

 Get the new node using getnode().

newnode  =  getnode();
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 If the list is empty, assign new node as start. 

star t  =  newnode;
newnode  ->  next  =  star t;

 If the list is not empty follow the steps given below: 
temp  =  star t ;
while(tem p  ->  next  !=  star t)

temp  =  temp  ->  next;
temp  ->  next  =  newnode;
newnode  ->  next  =  star t;

The  function  cll_inser t_end(),  is  used  for  inser ting   a  node  at  the  end.

Figure  6.6.3  shows  inser ting  a  node  into  the  circular  single  linked  list  at
the  end.

1 0 0  

1 0     2 0 0  2 0     3 0 0    3 0     4 0 0  4 0    5 0 0  
1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 6 . 3  I n s e r t i n g  a  n o d e  a t  t h e  e n d .  

5 0     1 0 0  

5 0 0  

Delet i n g  a  node  at  the  begin n i n g :

The  following  steps  are  followed,  to  delete  a  node  at  the  beginning  of  the
list:  

 If the  list  is  empty,  display  a  message  ‘Empty  List’.

 If the  list  is  not  empty,  follow  the  steps  given  below:

last  =  temp  =  star t ;
while(las t  ->  next  !=  star t)

last  =  last  ->  next;
star t  =  star t  ->  next;
last  ->  next  =  star t ;

 After  deleting  the  node,  if the  list  is  empty  then  start  =  NULL.

The  function  cll_delete_beg(),  is  used  for  deleting  the  first  node  in  the
list.  Figure  6.6.4  shows  deleting  a  node  at  the  beginning  of  a  circular
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single  linked  list.

2 0 0  

1 0     2 0 0  2 0     3 0 0    3 0     4 0 0  4 0    2 0 0  
1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 6 . 4 .  De l e t i n g  a  n o d e  a t  b e g i n n i n g .  

t e m p  

Delet i n g  a  node  at  the  end:

The  following  steps  are  followed  to  delete  a  node  at  the  end  of  the  list:  

 If the  list  is  empty,  display  a  message  ‘Empty  List’.

 If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  star t ;
prev  =  star t ;
while(tem p  ->  next  !=  star t)
{

prev  =  temp;
temp  =  temp  ->  next;

}
prev  ->  next  =  star t ;

 After  deleting  the  node,  if the  list  is  empty  then  start  =  NULL.

 The  function  cll_delete_las t(),  is  used  for  deleting  the  last  node  in  the
list.  

Figure  6.6.5  shows  deleting  a  node  at  the  end  of  a  circula r  single  linked
list.

1 0 0  

1 0     2 0 0  2 0     3 0 0    3 0     1 0 0  4 0    1 0 0  
1 0 0  2 0 0  3 0 0  4 0 0  

s t a r t  

Fi g u r e  6 . 6 . 5 .  De l e t i n g  a  n o d e  a t  t h e  e n d .  

Travers in g  a  circular  sing l e  linked  list  from  left  to  right:

The  following  steps  are  followed,  to  traverse  a  list  from  left  to  right:

 If list  is  empty  then  display  ‘Empty  List’  message.

91



 If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  star t ;
do
{

printf("%d  ",  temp  ->  data);
temp  =  temp  ->  next;

}  while(temp  !=  star t);

6.7. A Complete Source Code for the Implementation of Circular Single
Linked List:

#  include  <stdio.h >
#  include  <conio.h >
#  include  <stdlib.h >

struct  cslinklist
{

int  data;
struct  cslinklist  *next;

};

typedef  struct  cslinklist  node;
node  *star t  =  NULL;
int  nodect r ;

node*  getnode()
{

node  * newnode;
newnode  =  (node  *) malloc(sizeof(node));
printf("\n  Enter  data:  ");
scanf("%d",  &newnode  ->  data);
newnode  ->  next  =  NULL;
return  newnode;

}

int  menu()
{

int  ch;
clrscr();
printf("\n  1.  Crea te  a  list  ");
printf("\n\n- -------------------------");
printf("\n  2.  Inser t  a  node  at  beginning  ");
printf("\n  3.  Inser t  a  node  at  end");
printf("\n  4.  Inser t  a  node  at  middle");
printf("\n\n- -------------------------");
printf("\n  5.  Delete  a  node  from  beginning");
printf("\n  6.  Delete  a  node  from  Last");
printf("\n  7.  Delete  a  node  from  Middle");
printf("\n\n- -------------------------");
printf("\n  8.  Display  the  list");
printf("\n  9.  Exit");
printf("\n\n- -------------------------");
printf("\n  Enter  your  choice:  ");
scanf("%d",  &ch);
return  ch;
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}

void  creat elis t(in t  n)
{

int  i;
node  *newnode;
node  *temp;
nodect r  =  n;
for(i  =  0;  i <  n  ; i++)
{

newnode  =  getnode();
if(star t  = =  NULL)
{

star t  =  newnode;
}
else
{

temp  =  star t ;
while(temp  ->  next  !=  NULL)

temp  =  temp  ->  next;
temp  ->  next  =  newnode;

}
}
newnode  ->next  =  star t;  /* last  node  is  pointing  to  star ting  node  */

}

void  display()
{

node  *temp;
temp  =  star t ;
printf("\n  The  conten ts  of  List  (Left  to  Right):  ");
if(star t  = =  NULL  )

printf("\n  Empty  List");
else
do
{

printf("\t  %d  ",  temp  ->  data);
temp  =  temp  ->  next;

}while( tem p  !=  star t );
printf("  X ");

}

void  cll_inser t_beg()
{

node  *newnode,  *last;
newnode  =  getnode();
if(star t  = =  NULL)
{

star t  =  newnode;
newnode  ->  next  =  star t ;

}
else
{

last  =  star t;
while(las t  ->  next  !=  star t)

last  =  last  ->  next;
newnode  ->  next  =  star t ;
star t  =  newnode;
last  ->  next  =  star t;

}
printf("\n  Node  inser t ed  at  beginning. .");
nodect r + + ;

}

void  cll_inser t_end()
{

node  *newnode,  *temp;
newnode  =  getnode();
if(star t  = =  NULL  )
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{
star t  =  newnode;
newnode  ->  next  =  star t ;

}
else
{

temp  =  star t ;
while(temp  ->  next  !=  star t )

temp  =  temp  ->  next;
temp  ->  next  =  newnode;
newnode  ->  next  =  star t ;

}
printf("\n  Node  inser t ed  at  end..");
nodect r + + ;

}

void  cll_inser t_mid()
{

node  *newnode,  *temp,  *prev;
int  i,  pos  ;
newnode  =  getnode();
printf("\n  Enter  the  position:   ");
scanf("%d",  &pos);
if(pos  >  1  &&  pos  <  nodect r)
{

temp  =  star t ;
prev  =  temp;
i =  1;
while(i  <  pos)
{

prev  =  temp;
temp  =  temp  ->  next;
i++;

}
prev  ->  next  =  newnode;
newnode  ->  next  =  temp;
nodect r + + ;
printf("\n  Node  inser t ed  at  middle..");

}
else
{

printf("posi tion  %d  of  list  is  not  a  middle  position  ", pos);
}

}

void  cll_delete_beg()
{

node  *temp,  *last;
if(star t  = =  NULL)
{

printf("\n  No  nodes  exist..");
getch();
return  ;

}
else
{

last  =  temp  =  star t ;
while(las t  ->  next  !=  star t)

last  =  last  ->  next;
star t  =  star t  ->  next;
last  ->  next  =  star t;
free(temp);
nodect r- -;
printf("\n  Node  deleted . .");
if(nodec t r  = =  0)

star t  =  NULL;
}

}
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void  cll_delete_last()
{

node  *temp,*prev;
if(star t  = =  NULL)
{

printf("\n  No  nodes  exist..");
getch();
return  ;

}
else
{

temp  =  star t ;
prev  =  star t;
while(temp  ->  next  !=  star t )
{

prev  =  temp;
temp  =  temp  ->  next;

}
prev  ->  next  =  star t;
free(temp);
nodect r- -;
if(nodec t r  = =  0)

star t  =  NULL;
printf("\n  Node  deleted . .");

}
}

void  cll_delete_mid()
{

int  i =  0,  pos;
node  *temp,  *prev;

if(star t  = =  NULL)
{

printf("\n  No  nodes  exist..");
getch();
return  ;

}
else
{

printf("\n  Which  node  to  delete:  ");
scanf("%d",  &pos);
if(pos  >  nodec t r)
{

printf("\nThis  node  does  not  exist");
getch();
return ;

}
if(pos  >  1  &&  pos  <  nodect r)
{

temp = s t a r t ;
prev  =  star t;
i =  0;
while(i  <  pos  - 1)
{

prev  =  temp;
temp  =  temp  ->  next  ;
i++;

}
prev  ->  next  =  temp  ->  next;
free(temp);
nodect r- -;
printf("\n  Node  Deleted. .");

}
else
{

printf("\n  It  is  not  a  middle  position..");
getch();
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}
}

}

void  main(void)
{

int  resul t;
int  ch,  n;
clrscr();
while(1)
{

ch  =  menu();
switch(ch)
{

case  1  :
if(star t  = =  NULL)
{

printf("\n  Enter  Number  of  nodes  to  creat e:  ");
scanf("%d",  &n);
creat elis t(n);
printf("\nList  creat ed . .");

}
else

printf("\n  List  is  already  Exist..");
break;

case  2  :
cll_inser t_beg();
break;

case  3  :
cll_inser t_end();
break;

case  4  :
cll_inser t_mid();
break;

case  5  :
cll_delete_beg();
break;

case  6  :
cll_delete_last();
break;

case  7  :
cll_delete_mid();
break;

case  8  :
display();
break;

case  9  :
exit(0);

}
getch();

}
}

Circular  Double  Linked  List:

A circula r  double  linked  list  has  both  successor  pointe r  and  predece sso r
pointe r  in  circular  manne r .  The  objective  behind  considering  circular
double  linked  list  is  to  simplify  the  inser tion  and  deletion  opera t ions
performe d  on  double  linked  list.  In  circular  double  linked  list  the  right
link  of  the  right  most  node  points  back  to  the  start  node  and  left  link  of
the  first  node  points  to  the  last  node.
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A circula r  double  linked  list  is  shown  in  figure  6.8.1.

1 0 0  

3 0 0     1 0     2 0 0   2 0 0    3 0      1 0 0  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 8 . 1 .  C ir c u l a r  Do u b l e  L i n k e d  L i s t  

 1 0 0      2 0     3 0 0  

The  basic  opera t ions  in  a  circula r  double  linked  list  are:

 Creation.  
 Inser tion.
 Deletion.  
 Traversing.  

Creat in g  a  Circular  Doubl e  Linked  List  with  ‘n’  nu mb e r  of  nod e s:

The following steps are to be followed to create ‘n’ number of nodes:

 Get  the  new  node  using  getnode().

newnode  =  getnode();

  If the list is empty, then do the following 

star t  =  newnode;
newnode  ->  left  =  star t ;
newnode  ->righ t  =  star t ;

 If the list is not empty, follow the steps given below: 

newnode  ->  left  =   star t  ->  left;
newnode  ->  right  =  star t ;
star t  ->  left- >righ t  =  newnode;
star t  ->  left  =  newnode;

 Repea t  the  above  steps  ‘n’ times.

The  function  cdll_crea t e lis t(),  is  used  to  create  ‘n’ numbe r  of  nodes:

Insert in g  a  node  at  the  begi n n i n g :

The  following  steps  are  to  be  followed  to  inser t  a  new  node  at  the
beginning  of  the  list:

 Get  the  new  node  using  getnode().
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newnode = g e t n o d e();

 If the list is empty, then 

star t  =  newnode;
newnode  ->  left  =  star t ;
newnode  ->  right  =  star t ;

  If the list is not empty, follow the steps given below: 

newnode  ->  left  =  star t  ->  left;
newnode  ->  right  =  star t ;
star t  ->  left  ->  right  =  newnode;
star t  ->  left  =  newnode;
star t  =  newnode;

The  function  cdll_inser t_beg(),  is  used  for  inser ting  a  node  at  the
beginning.  Figure  6.8.2  shows  inser ting  a  node  into  the  circula r  double
linked  list  at  the  beginning.

4 0 0  

4 0 0     1 0     2 0 0   2 0 0     3 0     4 0 0  
1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 8 . 2 .  I n s e r t i n g  a  n o d e  a t  t h e  b e g i n n i n g  

 1 0 0    2 0      3 0 0  

3 0 0    4 0      1 0 0  

4 0 0  

Insert in g  a  node  at  the  end:

The  following  steps  are  followed  to  inser t  a  new  node  at  the  end  of  the
list:

 Get the new node using getnode()

newnode=getnode();

 If the list is empty, then  

star t  =  newnode;
newnode  ->  left  =  star t ;
newnode  ->  right  =  star t ;

 If the list is not empty follow the steps given below: 

newnode  ->  left  =  star t  ->  left;
newnode  ->  right  =  star t ;
star t  ->  left  ->  right  =  newnode;
star t  ->  left  =  newnode;
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The  function  cdll_inser t_end(),  is  used  for  inser ting   a  node  at  the  end.
Figure  6.8.3  shows  inser ting  a  node  into  the  circular  linked  list  at  the
end.

1 0 0  

4 0 0     1 0      2 0 0   2 0 0     3 0     4 0 0  
1 0 0  2 0 0  3 0 0  

st a r t  

Fi g u r e  6 . 8 . 3 .  I n s e r t i n g  a  n o d e  a t  t h e  e n d  

 1 0 0     2 0      3 0 0  

3 0 0     4 0      1 0 0     

4 0 0  

Insert in g  a  node  at  an  inter m e d i a t e  posi t io n:

The following steps are followed, to insert a new node in an intermediate position in the list: 

 Get  the  new  node  using  getnode().

newnode = g e t n o d e();

 Ensure  that  the  specified  position  is  in  between  first  node  and
last  node.  If  not,  specified  position  is  invalid.  This  is  done  by
countnode()  function.  

 
 Store  the  star ting  addres s  (which  is  in  star t  pointe r)  in  temp  and

prev  pointe r s .  Then  travers e  the  temp  pointe r  upto  the  specified
position  followed  by  prev  pointe r .

 After  reaching  the  specified  position,  follow  the  steps  given
below:  

newnode  ->  left  =  temp;
newnode  ->  right  =  temp  ->  right;
temp  ->  right  ->  left  =  newnode;
temp  ->  right  =  newnode;
nodec t r + + ;

The function cdll_insert_mid(), is used for inserting  a node in the intermediate position. Figure 6.8.4
shows inserting a node into the circular double linked list at a specified intermediate position other
than beginning and end.
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1 0 0  

3 0 0     1 0      4 0 0   4 0 0     2 0     3 0 0  
1 0 0  

4 0 0  

2 0 0  

st a r t  

Fi g ur e  6 . 8 . 4 .  I n s er t i n g  a  n o d e  a t  a n  i n t e r m e d i a t e  p o s it i o n  

 1 0 0     4 0      2 0 0  

2 0 0     3 0      1 0 0      

3 0 0  

Delet i n g  a  node  at  the  begin n i n g :

The  following  steps  are  followed,  to  delete  a  node  at  the  beginning  of  the
list:  

 If list  is  empty  then  display  ‘Empty  List’  message.

 If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  star t ;
star t  =  star t  ->  right;
temp  ->  left  ->  right  =  star t;
star t  ->  left  =  temp  ->  left;

The  function  cdll_delete_beg(),  is  used  for  deleting  the  first  node  in  the
list.  Figure  6.8.5  shows  deleting  a  node  at  the  beginning  of  a  circular
double  linked  list.

2 0 0  

3 0 0     1 0     2 0 0   2 0 0     3 0     2 0 0  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 8 . 5 .  De l e t i n g  a  n o d e  a t  b e g i n n i n g  

 3 0 0     2 0      3 0 0  

Delet i n g  a  node  at  the  end:

The  following  steps  are  followed  to  delete  a  node  at  the  end  of  the  list:  

 If list  is  empty  then  display  ‘Empty  List’  message

  If the  list  is  not  empty,  follow  the  steps  given  below:
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temp  =  star t ;
while(tem p  ->  right  !=  star t)
{

temp  =  temp  ->  right;
}
temp  ->  left  ->  right  =  temp  ->  right;
temp  ->  right  ->  left  =  temp  ->  left;

The  function  cdll_delete_las t(),  is  used  for  deleting  the  last  node  in  the
list.  Figure  6.8.6  shows  deleting  a  node  at  the  end  of  a  circular  double
linked  list.

1 0 0  

2 0 0    1 0     2 0 0   2 0 0     3 0    1 0 0  

1 0 0  2 0 0  3 0 0  

st a r t  

Fi g ur e  6 . 8 . 6 .  De l e t i n g  a  n o d e a t  t h e  e n d  

 1 0 0      2 0    1 0 0  

Delet i n g  a  node  at  Inter m e d i a t e  posi t io n:

The  following  steps  are  followed,  to  delete  a  node  from  an  interm e dia t e
position  in  the  list  (List  must  contain  more  than  two  node).

 If list  is  empty  then  display  ‘Empty  List’  message.

 If the  list  is  not  empty,  follow  the  steps  given  below:

 Get  the  position  of  the  node  to  delete.

 Ensure  that  the  specified  position  is  in  betwee n  first  node
and  last  node.  If not,  specified  position  is  invalid.  

 Then  perform  the  following  steps:

if(pos  >  1  &&  pos  <  nodect r)
    {

temp  =  star t ;
i =  1;
while(i  <  pos)
{

temp  =  temp  ->  right  ;
i+ +;

}
temp  ->  right  ->  left  =  temp  ->  left;
temp  ->  left  ->  right  =  temp  ->  right;
free(tem p);
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printf("\n  node  deleted. .");
nodec t r- -;

     }

The  function  cdll_delete_mid(),  is  used  for  deleting  the  interm e dia t e  node
in  the  list.  
Figure 6.8.7 shows deleting a node at a specified intermediate position other than beginning and end
from a circular double linked list.

1 0 0  

 3 0 0      1 0     3 0 0   1 0 0     3 0     1 0 0  

1 0 0  2 0 0  3 0 0  

s t a r t  

Fi g u r e  6 . 8 . 7 .  De l e t i n g  a  n o d e  a t  a n  i n t e r m e d i a t e  p o s it i o n  

 1 0 0     2 0      3 0 0  

Travers in g  a  circular  doubl e  link ed  list  from  left  to  right:

The  following  steps  are  followed,  to  traverse  a  list  from  left  to  right:

 If list  is  empty  then  display  ‘Empty  List’  message.

 If the  list  is  not  empty,  follow  the  steps  given  below:

temp  =  star t ;
Print   temp  ->  data;
temp  =  temp  ->  right;
while(tem p  !=  star t)
{

print   temp  ->  data;
temp  =  temp  ->  right;

}

The  function  cdll_display_left  _right(),  is  used  for  traversing  from  left  to  
right.

Travers in g  a  circular  doubl e  link ed  list  from  right  to  left:

The  following  steps  are  followed,  to  traverse  a  list  from  right  to  left:

 If list  is  empty  then  display  ‘Empty  List’  message.

 If the  list  is  not  empty,  follow  the  steps  given  below:
temp  =  star t ;
do
{
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temp  =  temp  ->  left;
print  temp  ->  data;

}  while(temp  !=  star t);

The  function  cdll_display_righ t_left(),  is  used  for  traversing  from  right  to  
left.

6.9. A Complete Source Code for the Implementation of Circular Double
Linked List:

#  include  <stdio.h >
#  include  <stdlib.h >
#  include  <conio.h >

struct  cdlinklist
{

struct  cdlinklist  *left;
int  data;
struct  cdlinklist  *right;

};

typedef  struct  cdlinklist  node;
node  *star t  =  NULL;
int  nodect r ;

node*  getnode()
{

node  * newnode;
newnode  =  (node  *) malloc(sizeof(node));
printf("\n  Enter  data:  ");
scanf("%d",  &newnode  ->  data);
newnode  ->  left  =  NULL;
newnode  ->  right  =  NULL;
return  newnode;

}

int  menu()
{

int  ch;
clrscr();
printf("\n  1.  Crea te  ");
printf("\n\n- -------------------------");
printf("\n  2.  Inser t  a  node  at  Beginning");
printf("\n  3.  Inser t  a  node  at  End");
printf("\n  4.  Inser t  a  node  at  Middle");
printf("\n\n- -------------------------");
printf("\n  5.  Delete  a  node  from  Beginning");
printf("\n  6.  Delete  a  node  from  End");
printf("\n  7.  Delete  a  node  from  Middle");
printf("\n\n- -------------------------");
printf("\n  8.  Display  the  list  from  Left  to  Right");
printf("\n  9.  Display  the  list  from  Right  to  Left");
printf("\n  10.Exit");
printf("\n\n  Enter  your  choice:  ");
scanf("%d",  &ch);
return  ch;

}

void  cdll_crea t elis t(int  n)
{

int  i;
node  *newnode,  *temp;
if(star t  = =  NULL)
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{
nodect r  =  n;
for(i  =  0;  i <  n;  i++)
{

newnode  =  getnode();
if(star t  = =  NULL)
{

star t  =  newnode;
newnode  ->  left  =  star t;
newnode  ->right  =  star t ;

}
else
{

newnode  ->  left  =   star t  ->  left;
newnode  ->  right  =  star t;
star t  ->  left- >right  =  newnode;
star t  ->  left  =  newnode;

}
}

}
else
{

printf("\n  List  already  exists..");
}

}

void  cdll_display_left_right()
{

node  *temp;
temp  =  star t ;
if(star t  = =  NULL)

printf("\n  Empty  List");
else
{

printf("\n  The  conten ts  of  List:  ");
printf("  %d  ",  temp  ->  data);
temp  =  temp  ->  right;
while(temp  !=  star t)
{

printf("  %d  ",  temp  ->  data);
temp  =  temp  ->  right;

}
}

}

void  cdll_display_right_left()
{

node  *temp;
temp  =  star t ;
if(star t  = =  NULL)

printf("\n  Empty  List");
else
{

printf("\n  The  conten ts  of  List:  ");
do
{

temp  =  temp  ->  left;
printf("\t%d",  temp  ->  data);

}while( tem p  !=  star t );
}

}

void  cdll_inser t_beg()
{

node  *newnode;
newnode  =  getnode();
nodect r + + ;
if(star t  = =  NULL)
{
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star t  =  newnode;
newnode  ->  left  =  star t;
newnode  ->  right  =  star t;

}
else
{

newnode  ->  left  =  star t  ->  left;
newnode  ->  right  =  star t;
star t  ->  left  ->  right  =  newnode;
star t  ->  left  =  newnode;
star t  =  newnode;

}
}

void  cdll_inser t_end()
{

node  *newnode,*tem p;
newnode  =  getnode();
nodect r + + ;
if(star t  = =  NULL)
{

star t  =  newnode;
newnode  ->  left  =  star t;
newnode  ->  right  =  star t;

}
else
{

newnode  ->  left  =  star t  ->  left;
newnode  ->  right  =  star t;
star t  ->  left  ->  right  =  newnode;
star t  ->  left  =  newnode;

}
printf("\n  Node  Inser ted  at  End");

}

void  cdll_inser t_mid()
{

node  *newnode,  *temp,  *prev;
int  pos,  ctr  =  1;
newnode  =  getnode();
printf("\n  Enter  the  position:  ");
scanf("%d",  &pos);
if(pos  - nodec t r  > =  2)
{

printf("\n  Position  is  out  of  range. .");
return ;

}
if(pos  >  1  &&  pos  < =  nodec t r)
{

temp  =  star t ;
while(ctr  <  pos  - 1)
{

temp  =  temp  ->  right;
ctr+ + ;

}
newnode  ->  left  =  temp;
newnode  ->  right  =  temp  ->  right;
temp  ->  right  ->  left  =  newnode;
temp  ->  right  =  newnode;
nodect r + + ;
printf("\n  Node  Inser ted  at  Middle..  ");

}
else
{

printf("posi tion  %d  of  list  is  not  a  middle  position",  pos);

}
}
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void  cdll_delete_beg()
{

node  *temp;
if(star t  = =  NULL)
{

printf("\n  No  nodes  exist..");
getch();
return  ;

}
else
{

nodect r- -;
if(nodec t r  = =  0)
{

free(sta r t );
star t  =  NULL;

}
else
{

temp  =  star t ;
star t  =  star t  ->  right;
temp  ->  left  ->  right  =  star t ;
star t  ->  left  =  temp  ->  left;
free(temp);

}
printf("\n  Node  deleted  at  Beginning..");

}
}

void  cdll_delete_last()
{

node  *temp;
if(star t  = =  NULL)
{

printf("\n  No  nodes  exist..");
getch();
return ;

}
else
{

nodect r- -;
if(nodec t r  = =  0)
{

free(sta r t );
star t  =  NULL;

}
else
{

temp  =  star t ;
while(temp  ->  right  !=  star t)

temp  =  temp  ->  right;
temp  ->  left  ->  right  =  temp  ->  right;
temp  ->  right  ->  left  =  temp  ->  left;
free(temp);

}
printf("\n  Node  deleted  from  end  ");

}
}

void  cdll_delete_mid()
{

int  ctr  =  1,  pos;
node  *temp;
if(  star t  = =  NULL)
{

printf("\n  No  nodes  exist..");
getch();
return ;

}
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else
{

printf("\n  Which  node  to  delete:  ");
scanf("%d",  &pos);
if(pos  >  nodec t r)
{

printf("\nThis  node  does  not  exist");
getch();
return ;

}
if(pos  >  1  &&  pos  <  nodect r)
{

temp  =  star t ;
while(ctr  <  pos)
{

temp  =  temp  ->  right  ;
ctr+ + ;

}
temp  ->  right  ->  left  =  temp  ->  left;
temp  ->  left  ->  right  =  temp  ->  right;
free(temp);
printf("\n  node  deleted . .");
nodect r- -;

}
else
{

printf("\n  It  is  not  a  middle  position..");
getch();

}
}

}

void  main(void)
{

int  ch,n;
clrscr();
while(1)
{

ch  =  menu();
switch(  ch)
{

case  1  :
printf("\n  Enter  Number  of  nodes  to  creat e:  ");
scanf("%d",  &n);
cdll_crea t elis t(n);
printf("\n  List  crea ted . .");
break;

case  2  :
cdll_inser t_beg();
break;

case  3  :
cdll_inser t_end();
break;

case  4  :
cdll_inser t_mid();
break;

case  5  :
cdll_delete_beg();
break;

case  6  :
cdll_delete_last();
break;

case  7  :
cdll_delete_mid();
break;

case  8  :
cdll_display_left_right();
break;

case  9  :

107



cdll_display_right_left();
break;

case  10:
exit(0);

}
getch();

}
}

6.9. Linked  List  Imple m e n t a t i o n  of  Stack:

We  can  repres e n t  a  stack  as  a  linked  list.  In  a  stack  push  and  pop
opera t ions  are  performe d  at  one  end  called  top.   We  can  perform  similar
opera t ions  at  one  end  of  list  using  top  pointe r .  The  linked  stack  looks  as
shown  in  figure  6.9.1:
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The  progra m  for  linked  list  imple m e n t a t i o n  of  stack:

#  include  <stdio.h >
#  include  <conio.h >
#  include  <stdlib.h >

struct  stack
{

int  data;
struct  stack  *next;

};

void  push();
void  pop();
void  display();
typedef  struct  stack  node;
node  *star t = N ULL;
node  *top  =  NULL;

node*  getnode()
{

struct  stack  *temp;
temp =( nod e  *) malloc(  sizeof(node))  ;
printf("\n  Enter  data  ");
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scanf("%d",  &temp  ->  data);
temp  ->  next  =  NULL;
return  temp;

}

void  push(node  *newnode)
{

node  *temp;
if(  newnode  = =  NULL  )
{

printf("\n  Stack  Overflow..");
return ;

}
if(star t  = =  NULL)
{

star t  =  newnode;
top  =  newnode;

}
else
{

temp  =  star t ;
while(  temp  ->  next  !=  NULL)

temp  =  temp  ->  next;
temp  ->  next  =  newnode;
top  =  newnode;

}
printf("\n\n\t  Data  pushed  into  stack");

}

void  pop()
{

node  *temp;
if(top  = =  NULL)
{

printf("\n\n\t  Stack  underflow");
return ;

}
temp  =  star t ;
if(  star t  ->  next  = =  NULL)
{

printf("\n\n\t  Popped  element  is  %d  ",  top  ->  data);
star t  =  NULL;
free(top);
top  =  NULL;

}
else
{

while(temp  ->  next  !=  top)
{

temp  =  temp  ->  next;
}
temp  ->  next  =  NULL;
printf("\n\n\t  Popped  element  is  %d  ",  top  ->  data);
free(top);
top  =  temp;

}
}

void  display()
{

node  *temp;
if(top  = =  NULL)
{

printf("\n\n\t\ t  Stack  is  empty  ");
}
else
{

temp  =  star t ;
printf("\n\n\n\ t\ t  Elemen ts  in  the  stack:  \n");
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printf("%5d   ",  temp  ->  data);
while(temp  !=  top)
{

temp  =  temp  ->  next;
printf("%5d    ",  temp  ->  data);

}
}

}

char  menu()
{

char  ch;
clrscr();
printf("\n  \tStack  opera tions  using  pointe rs . .  ");
printf("\n  -----------**********-------------\n");
printf("\n  1.  Push  ");
printf("\n  2.  Pop  ");
printf("\n  3.  Display");
printf("\n  4.  Quit  ");
printf("\n  Enter  your  choice:  ");
ch  =  getche();
return  ch;

}

void  main()
{

char  ch;
node  *newnode;
do
{

ch  =  menu();
switch(ch)
{

case  '1'  :
newnode  =  getnode();
push(newnod e);
break;

case  '2'  :
pop();
break;

case  '3'  :
display();
break;

case  '4':
return ;

}
getch();

}while(  ch  !=  '4'  );
}

6.10 . Linked  List  Imple m e n t a t i o n  of  Queu e:

We  can  repres e n t  a  queue  as  a  linked  list.  In  a  queue  data  is  deleted
from  the  front  end  and  inser ted  at  the  rear  end.  We  can  perform  similar
opera t ions  on  the  two  ends  of  a  list.  We  use  two  pointe r s  front  and  rear
for  our  linked  queue  implemen t a t ion .

The  linked  queue  looks  as  shown  in  figure  6.10.1:
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The  progra m  for  linked  list  imple m e n t a t i o n  of  queu e:

#  include  <stdio.h >
#  include  <stdlib.h >
#  include  <conio.h >

struct  queue
{

int  data;
struct  queue  *next;

};

typedef  struct  queue  node;
node  *front  =  NULL;
node  *rear  =   NULL;

node*  getnode()
{

node  *temp;
temp  =  (node  *) malloc(sizeof(node))  ;
printf("\n  Enter  data  ");
scanf("%d",  &temp  ->  data);
temp  ->  next  =  NULL;
return  temp;

}

void  inser tQ()
{

node  *newnode;
newnode  =  getnode();
if(newnode  = =  NULL)
{

printf("\n  Queue  Full");
return ;

}
if(front  = =  NULL)
{

front  =  newnode;
rear  =  newnode;

}
else
{

rear  ->  next  =  newnode;
rear  =  newnode;

}
printf("\n\n\t  Data  Inser t ed  into  the  Queue. .");

}

void  deleteQ()
{

node  *temp;
if(front  = =  NULL)
{

printf("\n\n\t  Empty  Queue. .");
return ;
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}
temp  =  front;
front  =  front  ->  next;
printf("\n\n\t  Deleted  elemen t  from  queue  is  %d  ",  temp  ->  data);
free(temp);

}

void  displayQ()
{

node  *temp;
if(front  = =  NULL)
{

printf("\n\n\t\ t  Empty  Queue  ");
}
else
{

temp  =  front;
printf("\n\n\n\ t\ t  Elemen ts  in  the  Queue  are:  ");
while(temp  !=  NULL  )
{

printf("%5d   ",  temp  ->  data);
temp  =  temp  ->  next;

}
}

}

char  menu()
{

char  ch;
clrscr();
printf("\n  \t..Queue  opera tions  using  pointe rs . .  ");
printf("\n\t  -----------**********-------------\n");
printf("\n  1.  Inser t  ");
printf("\n  2.  Delete  ");
printf("\n  3.  Display");
printf("\n  4.  Quit  ");
printf("\n  Enter  your  choice:  ");
ch  =  getche();
return  ch;

}

void  main()
{

char  ch;
do
{

ch  =  menu();
switch(ch)
{

case  '1'  :
inser tQ();
break;

case  '2'  :
deleteQ();
break;

case  '3'  :
displayQ();
break;

case  '4':
return ;

}
getch();

}  while(ch  !=  '4');
}
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Unit  

  4                          Trees  

A data  structu r e  is  said  to  be  linear  if  its  elemen t s  form  a  sequence  or  a
linear  list.  Previous  linear  data  structu r e s  that  we  have  studied  like
arrays,  stacks,  queues  and  linked  lists  organize  data  in  linear  order .  

Some  data  organizat ions  require  categorizing  data  into  groups/sub-
groups.  A data  structu r e  is  said  to  be  non  linear  if  its  element s  form  a
hiera rchical  classification  where,  d ata  items  appear  at  various  levels.  

Trees and Graphs are widely used non-linear data structures. Tree and graph  structures represents  
hierarchial relationship between individual data elements. Graphs are nothing but trees with certain 
restrictions removed.

7.1. TREES:

A tree t is a finite non-empty set of elements. One of these elements is called the root, and the 
remaining elements (if any) are partitioned into trees, which are called the subtrees of t. A  node 
without a parent is called the root node (or root). Nodes with no children are called leaf nodes.

 

r 2   r 1   

r  

r n  

T 1  

.  .  .  .  .  

.  .  .  .  .  

T n  T 2  

 

F i g u r e  7 . 1 . 1 .  R e c u r s i v e  s t r u c t u r e  o f  t r e e  a n d  m - a r y  t r e e  

6  7  8  9  1 0  1 1  

2  3  4  5  

1  

In the figure 7.1.1, r is a root node and T1, T2,..., Tn are trees with roots r1, r2,..., rn, respectively, then 
we can construct a new tree whose root is r and T1, T2,..., Tn are the subtrees of the root. The nodes 
r1, r2,..., rn are called the children of r.

In a tree data structure, there is no distinction between the various children of a node i.e., none is the 
"first child" or "last child". A tree in which such distinctions are made is called an ordered tree, and 
data structures built on them are called ordered tree data structures. Ordered trees are by far the 
commonest form of tree data structure. 

A special kind of tree called binary tree is easy to maintain in the computer.

7.2. BINARY TREE:

A binary tree is a tree in which each node can have at most two children. 

A binary tree is either empty or consists of a node called the root together with two binary trees 
called the left subtree and the right subtree. 

A tree with no nodes is called as a null tree. A binary tree is shown in figure 7. 2.

114



A  

C B  

F E G D  

I  H  

Fi g ur e 7 . 2 . 1 .  Bi n a ry  T r e e  

r i g ht  c h i l d  l e f t  c h i l d  

r i g ht  s u bt r e e  
l e f t  s u b t r e e  

 

 

Tree Terminology:

Leaf node:

A node with no children is called a leaf (or external node).  A node which is not a leaf is called
an internal node.

Path 
A sequence of nodes n1, n2, . . ., nk, such that ni is the parent of ni + 1 for i = 1, 2,. . ., k - 1. The 
length of a path is 1 less than the number of nodes on the path. Thus there is a path of length
zero from a node to itself. 

For the tree shown in figure 7.2.1, the path between A and I is A, B, D, I.

Siblings 

The children of the same parent are called siblings. 

For the tree shown in figure 7.2.1, F and G are the siblings of the parent node B and H and I 
are the siblings of the parent node D. 

Ances t or  and  Desc e n d e n t
  

If there  is  a  path  from  node  A to  node  B,  then  A is  called  an  
ances to r  of  B and

B is called a descendent of A.
 

Subtree 

Any  node  of  a  tree,  with  all  of  its  descend a n t s  is  a  subtre e .

Level
The level of the node refers to its distance from the root. The root of the tree has level O, and 
the level of any other node in the tree is one more than the level of its parent. For example, in
the binary tree of Figure 7.2.1 node F is at level 2 and node H is at level 3. 

The maximum number of nodes at any level is 2n. 

Height 

The maximum level in a tree determines its height. The height of a node in a tree is the length
of a longest path from the node to a leaf. The term depth is also used to denote height of the 
tree. The height of the tree of Figure 7.2.1 is 3. 

Assigning level numbers and Numbering of nodes for a binary tree:

The nodes of a binary tree can be numbered in a natural way, level by level, left to right. The 
nodes of an complete binary tree can be numbered so that the root is assigned the number 1,
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a left child is assigned twice the number assigned its parent, and a right child is assigned one
more than twice the number assigned its parent. For example, see Figure 7.2.2. 

1 

3 2 

6 5 7 4 

9 8 

Figure 7.2.2. Level by  level number ing of binary  tree 

Level 0 

Level 1 

Level 2 

Level 3 

Properties of binary trees:

Some of the important properties of a binary tree are as follows:

1. If h = height of a binary tree, then

a. Maximum number of leaves = 2h

b. Maximum number of nodes = 2h + 1 - 1

2. If a binary tree  contains m nodes at level l, it contains at most 2m nodes at level l + 1. 

3. Since a binary tree can contain at most one node at level 0 (the root), it can contain at most 2 l

node at level l. 

4. The total number of edges in a full binary tree with n node is n - 1.

Strictly Binary tree:

If every non-leaf node in a binary tree has nonempty left and right subtrees, the tree is termed
a strictly binary tree. Thus the tree of figure 7.2.3(a) is strictly binary. A strictly binary tree with
n leaves always contains 2n - 1 nodes. 

Full Binary tree:

A full binary tree of height h has all its leaves at level h. Alternatively; All non leaf nodes of a full
binary tree have two children, and the leaf nodes have no children.

A full binary tree with height h has 2h + 1 - 1 nodes. A full binary tree of height h is a strictly 
binary tree all of whose leaves are at level h. Figure 7.2.3(d) illustrates the full binary tree 
containing 15 nodes and of height 3.

A full binary tree of height h contains 2h leaves and, 2h - 1 non-leaf nodes. 

Thus by induction, total number of nodes ( 122) 1

0
 



h
h

l

ltn .

For example, a full binary tree of height 3 contains 23+1 – 1 = 15 nodes.
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Complete Binary tree:

A binary tree with n nodes is said to be complete if it contains all the first n nodes of the 
above numbering scheme. Figure 7.2.4 shows examples of complete and incomplete binary 
trees.

A complet e  binary  tree  of  height  h  looks  like  a  full  binary  tree  down
to  level  h-1,  and  the  level  h  is  filled  from  left  to  right.

A complete binary tree with n leaves that is not strictly binary has 2n nodes. For example, the 
tree of Figure 7.2.3(c) is a complete binary tree having 5 leaves and 10 nodes. 
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Binary Search Tree:

A binary search tree is a binary tree. It may be empty. If it is not empty then it satisfies the following 
properties:

1. Every element has a key and no two elements have the same key.
2. The keys in the left subtree are smaller than the key in the root.

3. The keys in the right subtree are larger than the key in the root.
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4. The left and right subtrees are also binary search trees.

Figure 7.2.5(a) is a binary search tree, whereas figure 7.2.5(b) is not a binary search tree.
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Data Structures for Binary Trees: 

1. Arrays; especially suited for complete and full binary trees. 

2. Pointer-based. 

Array-based Implementation:

Binary trees can also be stored in arrays, and if the tree is a complete binary tree, this method wastes
no space. In this compact arrangement, if a node has an index i, its children are found at indices 2i+1 
and 2i+2, while its parent (if any) is found at index floor((i-1)/2) (assuming the root of the tree stored in
the array at an index zero). 

This method benefits from more compact storage and better locality of reference, particularly during a
preorder traversal. However, it requires contiguous memory, expensive to grow and wastes space 
proportional to 2h - n for a tree of height h with n nodes. 

   0        1        2        3        4       5        6  

Linked  Repre s e n t a t i o n  (Point er  bas ed ):

Array representation is good for complete binary tree, but it is wasteful for many other binary trees. 
The representation suffers from insertion and deletion of node from the middle of the tree, as it 
requires the moment of potentially many nodes to reflect the change in level number of this node. To 
overcome this difficulty we represent the binary tree in linked representation.
In  linked  repres en t a t ion  each  node  in  a  binary  has  three  fields,  the  left
child  field  denoted  as  LeftChild ,  data  field  denoted  as  data  and  the  right
child  field  denoted  as  RightChild .  If  any  sub- tree  is  empty  then  the
corresponding  pointe r’s  LeftChild  and  RightChild  will  store  a  NULL
value.  If the  tree  itself  is  empty  the  root  pointer  will  store  a  NULL  value.  

The  advantag e  of  using  linked  repre se n t a t ion  of  binary  tree  is  that:

118



 Inser tion  and  deletion  involve  no  data  movemen t  and  no
movemen t  of  nodes  except  the  rear r a n g e m e n t  of  pointe r s .

The  disadvan ta g e s  of  linked  repre se n t a t ion  of  binary  tree  includes:

 Given  a  node  struc tu r e ,  it  is  difficult  to  dete rmine  its  paren t
node.

 Memory  spaces  are  wasted  for  storing  NULL  pointer s  for  the
nodes,  which  have  no  subt ree s .

The  structu r e  definition,  node  repres en t a t ion  empty  binary  tree  is  shown
in  figure  7.2.6  and  the  linked  repres e n t a t ion  of  binary  tree  using  this
node  structu r e  is  given  in  figure  7.2.7.   
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X  X  X  

X  X  X  X  

X  X  X  

7.3. BINARY TREE TRAVERSAL TECHNIQUES:

Search  means  finding  a  path  or  travers al  betwee n  a  star t  node  and  one
of  a  set  of  goal  nodes .  Search  involves  visiting  nodes  in  a  graph  in  a
systema t ic  manne r ,  and  may  or  may  not  resul t  into  a  visit  to  all  nodes.
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When  the  search  necessa r ily  involved  the  examina tion  of  every  vertex  in
the  tree,  it  is  called  the  travers a l.
There  are  four  common  ways  to  traverse  a  binary  tree:

1. Preorde r
2. Inorde r   
3. Postorde r
4. Level  order

In  the  first  three  traversa l  methods ,  the  left  subtree  of  a  node  is
travers ed  before  the  right  subtree .  The  difference  among  them  comes
from  the  difference  in  the  time  at  which  a  root  node  is  visited.  

Inorder  Travers a l:

In the case of inorder traversal, the root of each subtree is visited after its left subtree has been 
traversed but before the traversal of its right subtree begins. The steps for traversing a binary tree in 
inorder traversal are:

1. Visit  the  left  subtree ,  using  inorde r .
2. Visit  the  root.
3. Visit  the  right  subtre e ,  using  inorder .

The  algorithm  for  inorder  traversa l  is  as  follows:

void  inorder(node  *root)
{

if(root  !=  NULL)
{

inorder( roo t- >lchild);
print  root  ->  data;
inorder( roo t- >rchild);

}
}

Preord er  Travers a l:

In a preorder traversal, each root node is visited before its left and right subtrees are traversed. 
Preorder search is also called backtracking. The steps for traversing a binary tree in preorder 
traversal are:

1. Visit  the  root.
2. Visit  the  left  subtree ,  using  preorde r .
3. Visit  the  right  subtre e ,  using  preorde r .

The  algorithm  for  preorde r  travers a l  is  as  follows:

void  preorde r (node  *root)
{

if( root  !=  NULL  )
{
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print root -> data;
preorde r  (root  ->  lchild);
preorde r  (root  ->  rchild);

}
}

Postord er  Travers a l:

In  a  postorde r  travers al ,  each  root  is  visited  after  its  left  and  right  
subtree s  have  been  traverse d .  The  steps  for  traversing  a  binary  tree  in  
postorde r  travers a l  are:

1. Visit  the  left  subtree ,  using  postorde r .
2. Visit  the  right  subtre e ,  using  postorde r
3. Visit  the  root.

The  algorithm  for  postorde r  traversa l  is  as  follows:

void  postorde r(node  *root)
{

if( root  !=  NULL  )
{

postorde r  (root  ->  lchild);
postorde r  (root  ->  rchild);
print  (root  ->  data);

}
}

Level  order  Traversa l:

In a level order traversal elements are visited by level from top to bottom. Within levels, elements are 
visited from left to right. The level order traversal requires a queue data structure. So, it is not possible
to develop a recursive procedure to traverse the binary tree in level order. This is nothing but a 
breadth first search technique.

The  algorithm  for  level  order  traversa l  is  as  follows:

void  levelorde r()
{

int  j;
for(j  =  0;  j <  ctr;  j++)
{

if(tree[j]  !=  NULL)
print tree[j] -> data;

}
}
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Exampl e  1:

Traverse the following binary tree in pre, post, inorder and level order.

A  

B  

D  

C 

E F 

G H  I  

� Pr eo r d e r  t r a v e rs a l y ie lds:  
     A,  B,  D,  C,  E, G, F,  H,  I  
 
� Po st o r d e r  t r a v e rsa l y ie lds:  
     D,  B,  G,  E,  H,  I ,  F,  C,  A  
 
� I n o r d e r  t r a v e rs a l y ie lds:  
     D,  B,  A, E,  G,  C, H,  F,  I  
 
� Le v e l o r d e r  t r a v e rs a l y ie lds:  
      A,  B,  C, D,  E,  F,  G,  H,  I  

Bi n a ry  T r e e   Pr e,  Po st ,  I n or d er  a n d l ev e l or d er  T r av er s i n g  

Exampl e  2:

Traverse the following binary tree in pre, post, inorder and level order.

P 

F 

H  B  Y  

G  

R 

S 

� Pr eo r d e r  t r a v e rs a l y ie lds:  
     P,  F,  B,  H ,  G ,  S ,  R,  Y,  T,  W ,  Z   
 
� Po st o r d e r  t r a v e rs a l y ie lds:  
     B ,  G ,  H ,  F,  R,  W ,  T,  Z ,  Y,  S ,  P  
 
� I n o r d e r  t r a v e rs a l y ie lds:  
    B, F,  G ,  H ,  P,  R,  S ,  T,  W ,  Y,  Z  
 
� Le v e l o r d e r  t r a v e rs a l y ie lds:  
     P,  F,  S ,  B ,  H ,  R,  Y,  G ,  T,  Z ,  W  

Bi n a ry  T r e e   Pr e ,  Po st ,  I n or d er  a n d  l ev e l o r d er  T r av er s i n g  

Z  T  

W  

Exampl e  3:

Traverse the following binary tree in pre, post, inorder and level order.

2  

7  

6  2  9  

5  

5  

� Pr eo r d e r  t r a v e rs a l y ie lds:  
     2 ,  7 ,  2 ,  6 ,  5 ,  1 1 ,  5 ,  9 ,  4   
 
� Po st o r d e r  t r a v a rs a l y ie lds:  
     2 ,  5 ,  1 1 ,  6 ,  7 ,  4 ,  9 ,  5 ,  2   
 
� I n o r d e r  t r a v a rs a l y ie lds:  
     2 ,  7 ,  5 ,  6 ,  1 1 ,  2 ,  5 ,  4 ,  9  
 
� Le v e l o r d e r  t r a v e rs a l y ie lds:  
     2 ,  7 ,  5 ,  2 ,  6 ,  9 ,  5 ,  1 1 ,  4  

Bi n a ry  T r e e   Pr e ,  Po st ,  I n o r d e r  a n d  l ev e l o r d e r  T r av e r s i n g  

4  1 1  

Exampl e  4:

Traverse the following binary tree in pre, post, inorder and level order.
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A  

B  

K  L  

E 

G  

C 

� Pr eo r d e r  t r a v e rs a l y ie lds:  
     A ,  B ,  D ,  G ,  K ,  H ,  L ,  M ,  C ,  E 
 
� Po st o r d e r  t r a v a rs a l y ie lds:  
     K ,  G ,  L ,  M ,  H ,  D ,  B ,  E,  C ,  A  
 
� I n o r d e r  t r a v a rs a l y ie lds:  
     K ,  G ,  D ,  L ,  H ,  M ,  B ,  A ,  E,  C  
 
� Le v e l o r d e r  t r a v e rs a l y ie lds:  
      A ,  B ,  C ,  D ,  E,  G ,  H ,  K ,  L ,  M  

Bi n a ry  T r e e   Pr e ,  Po st ,  I n o r d e r  a n d  l ev e l o r d e r  T r av e r s i n g  

D  

H  

M  

Format i o n  of  Binary  Tree  from  its  Travers a l:

Sometimes  it  is  required  to  const ruc t  a  binary  tree  if its  travers a ls  are  
known.  From  a  single  travers al  it  is  not  possible  to  const ruc t  unique  
binary  tree.  However  if two  are  travers al s  then  correspon ding  tree  can  
be  drawn  uniquely.  The  basic  principle  for  formulat ion  is  as  follows:
If  the  preorde r  travers al  is  given,  then  the  first  node  is  the  root  node.  If
the  postorde r  traversa l  is  given  then  the  last  node  is  the  root  node.  Once
the  root  node  is  identified,  all  the  nodes  in  the  left  sub- trees  and  right
sub- trees  of  the  root  node  can  be  identified.  

Same  technique  can  be  applied  repea t e dly  to  form  sub- trees .  

It  can  be  noted  that,  for  the  purpose  mentioned,  two  traversa l  are
essential  out  of  which  one  should  be  inorder  travers a l  and  anothe r
preorde r  or  postorde r ;  alterna t ively,  given  preorde r  and  postorde r
travers a ls ,  binary  tree  cannot  be  obtained  uniquely.  

Exampl e  1:

Construc t  a  binary  tree  from  a  given  preorde r  and  inorder  sequence :

Preorder: A B D G C E H I F 
Inorder: D G B A H E I C F

Solution:

From  Preorder  sequence  A  B  D G C E  H  I F , the  root  is:  A

From  Inorder  sequenc e  D G B  A  H  E  I C F , we  get  the  left  and  right  sub  
trees:

Left  sub  tree  is:  D G B

Right  sub  tree  is:  H  E  I C F

The  Binary  tree  upto  this  point  looks  like:
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A  

H E I  C F  D G B  

To  find  the  root,  left  and  right  sub  trees  for  D G B: 

From the preorder sequence B D G, the root of tree is: B

From  the  inorder  sequence  D G B,  we  can  find  that  D and  G are  to  the  
left  of  B.

The  Binary  tree  upto  this  point  looks  like:

A  

H E I  C F  

D G   

B  

To  find  the  root,  left  and  right  sub  trees  for  D G:

From the preorder sequence D G, the root of the tree is: D

From  the  inorder  sequence  D  G , we  can  find  that  there  is  no  left  node  to  
D and  G is  at  the  right  of  D.
The  Binary  tree  upto  this  point  looks  like:

A  

H E I  C F  

D  

B  

G  

To  find  the  root,  left  and  right  sub  trees  for  H  E  I C F:

From the preorder sequence C E H I F, the root of the left sub tree is: C

From  the  inorder  sequence  H  E  I C  F , we  can  find  that  H  E  I are  at  the  
left  of  C and  F  is  at  the  right  of  C.

The  Binary  tree  upto  this  point  looks  like:
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A  

H E I   D  

B  

G  

F 

C 

To  find  the  root,  left  and  right  sub  trees  for  H  E  I:

From the preorder sequence E H I, the root of the tree is: E

From  the  inorder  sequence  H  E  I, we  can  find  that  H  is  at  the  left  of  E  
and  I is  at  the  right  of  E.

The  Binary  tree  upto  this  point  looks  like:
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A 

D 

B 

G 

F E 

H 

C 

I 

Example 2: 

Construc t  a  binary  tree  from  a  given  postorde r  and  inorder  sequence :

Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9
Postorder: n1 n3 n5 n4 n2 n8 n7 n9 n6

Solution:

From  Postorder  sequenc e  n1  n3  n5  n4  n2  n8  n7  n9  n6 , the  root  is:  n6

From  Inorder  sequenc e  n1  n2  n3  n4  n5  n6  n7  n8  n9 , we  get  the  left  and  
right  sub  trees:

Left  sub  tree  is:  n1  n2  n3  n4  n5
Right  sub  tree  is:  n7  n8  n9

The  Binary  tree  upto  this  point  looks  like:

n6 

n7 n8 n9 n1 n2 n3 n4 n5 

To  find  the  root,  left  and  right  sub  trees  for    n1  n2  n3  n4  n5  : 

From the postorder sequence n1 n3 n5 n4 n2, the root of tree is: n2

From  the  inorder  sequence  n1  n2  n3  n4  n5 ,  we  can  find  that  n1  is  to  the  
left  of  n2  and  n3  n4  n5  are  to  the  right  of  n2.

The  Binary  tree  upto  this  point  looks  like:
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n6 

n7 n8 n9 

n3 n4 n5  

n2 

n1 

To  find  the  root,  left  and  right  sub  trees  for  n3  n4  n5:

From the postorder sequence n3 n5 n4, the root of the tree is: n4

From  the  inorder  sequence  n3  n4  n5 , we  can  find  that  n3  is  to  the  left  of  
n4  and  n5  is  to  the  right  of  n4.

The  Binary  tree  upto  this  point  looks  like:

n6 

n7 n8 n9 n2 

n1 n4 

n5 n3 

To  find  the  root,  left  and  right  sub  trees  for  n7  n8  and  n9:

From the postorder sequence n8 n7 n9, the root of the left sub tree is: n9

From  the  inorder  sequence  n7  n8  n9 , we  can  find  that  n7  and  n8  are  to  
the  left  of  n9  and  no  right  subtree  for  n9.

The  Binary  tree  upto  this  point  looks  like:

n6 

n7 n8  

n2 

n1 n4 

n5 n3 

n9 

To  find  the  root,  left  and  right  sub  trees  for  n7  and  n8:

From the postorder sequence n8 n7, the root of the tree is: n7

From  the  inorder  sequence  n7  n8 , we  can  find  that  there  is  no  left  
subtree  for  n7  and  n8  is  to  the  right  of  n7.
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The  Binary  tree  upto  this  point  looks  like:

n6 

n2 

n1 n4 

n5 n3 

n9 

n8 

n7 

Binary Tree Creation and Traversal Using Arrays:

This  progra m  performs  the  following  opera t ions:

1. Crea te s  a  comple te  Binary  Tree
2. Inorde r  traversal
3. Preorde r  traversal
4. Postorde r  traversal
5. Level  order  traversal
6. Prints  leaf  nodes  
7. Finds  height  of  the  tree  creat ed

#  include  <stdio.h >
#  include  <stdlib.h >

struct tree
{

struct  tree*  lchild;
char   data[10];
struct  tree*  rchild;

};

typedef  struct  tree  node;
int  ctr;
node  *tree[100];

node*  getnode()
{

node  *temp  ;
temp  =  (node*)  malloc(sizeof(node));
printf("\n  Enter  Data:  ");
scanf("%s",temp- >dat a);
temp- >lchild  =  NULL;
temp- >rchild  =  NULL;
return  temp;

}

void  creat e_fbina ry t r e e()
{

int  j,  i=0;
printf("\n  How  many  nodes  you  want:  ");
scanf("%d",&ct r);
tree[0]  =  getnode();
j =  ctr;
j--;
do
{

if(  j >  0  ) /* left  child   */
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{
tree[  i * 2  +  1  ] =  getnode();
tree[i]- >lchild  =  tree[i  * 2  +  1];
j--;

}
if(  j >  0  ) /* right  child  */
{

tree[i  * 2  +  2]  =  getnode();
j--;
tree[i]- >rchild  =  tree[i  * 2  +  2];

}
i++;

}  while(  j >  0);
}

void  inorder(node  *root)
{

if(  root  !=  NULL  )
{

inorder( root- >lchild);
printf("%3s",root- >da ta );
inorder( root- >rchild);

}
}

void  preorde r (nod e  *root)
{

if(  root  !=  NULL  )
{

printf("%3s",root- >da ta );
preorde r ( roo t- >lchild);
preorde r ( roo t- >rchild);

}
}

void  postorde r (nod e  *root)
{

if(  root  !=  NULL  )
{

postorde r ( roo t- >lchild);
postorde r ( roo t- >rchild);
printf("%3s",root- >da ta );

}
}
void  levelorde r ()
{

int  j;
for(j  =  0;  j <  ctr;  j++)
{

if(tree[j]  !=  NULL)
printf("%3s",t r ee[j]- >da ta );

}
}

void  print_leaf(node  *root)
{

if(root  !=  NULL)
{

if(root- >lchild  = =  NULL  &&  root- >rchild  = =  NULL)
  printf("%3s  ",root- >da t a) ;
  print_leaf(root- >lchild);
  print_leaf(root- >rchild);

}
}

int  height(node  *root)
{

if(root  = =  NULL)
{
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return  0;
}
if(root- >lchild  = =  NULL  &&  root- >rchild  = =  NULL)

return  0;
else

return  (1  +  max(heigh t( root- >lchild),  height(root- >rchild)));
}

void  main()
{

int  i;
creat e_fbina ry t r e e();
printf("\n  Inorde r  Traversal:  ");
inorder( t r ee[0]);
printf("\n  Preorde r  Traversal:  ");
preorde r ( t r e e[0]);
printf("\n  Postorde r  Traversal :  ");
postorde r ( t r e e[0]);
printf("\n Level Order Traversal: ");
levelorde r ();
printf("\n  Leaf  Nodes:  ");
print_leaf(t ree[0]);
printf("\n  Height  of  Tree:  %d  ",  height( t r ee[0]));

}

Binary Tree Creation and Traversal Using Pointers:

This  progra m  performs  the  following  opera t ions:

1. Crea te s  a  comple te  Binary  Tree
2. Inorde r  traversal
3. Preorde r  traversal
4. Postorde r  traversal
5. Level  order  traversal
6. Prints  leaf  nodes  
7. Finds  height  of  the  tree  creat ed
8. Deletes  last  node
9. Finds  height  of  the  tree  creat ed

#  include  <stdio.h >
#  include  <stdlib.h >

struct  tree
{

struct  tree*  lchild;
char   data[10];
struct  tree*  rchild;

};

typedef  struct  tree  node;
node  *Q[50];
int  node_ct r;

node*  getnode(void)
{

node  *temp  ;
temp  =  (node*)  malloc(sizeof(node));
printf("\n  Enter  Data:  ");
fflush(stdin);
scanf("%s",temp- >dat a);
temp- >lchild  =  NULL;
temp- >rchild  =  NULL;
return  temp;

}

void  creat e_bina ry t r e e(nod e  *root)
{

char  option;
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if(  root  !=  NULL  )
{

printf("\n  Node   %s  has  Left  SubTree(Y/N)",root- >da ta );
fflush(stdin);
scanf("%c",&option);
if(  option = = 'Y'  ||  option  = =  'y')
{

root- >lchild  =  getnode();
creat e_bina ry t r e e( root- >lchild);

}
else
{

root- >lchild  =  NULL;
creat e_bina ry t r e e( root- >lchild);

}

printf("\n  Node  %s  has  Right  SubTree(Y/N)  ",root- >da t a) ;
fflush(stdin);
scanf("%c",&option);
if(  option = = 'Y'  ||  option  = =  'y')
{

root- >rchild  =  getnode();
creat e_bina ry t r e e( root- >rchild);

}
else
{

root- >rchild  =  NULL;
creat e_bina ry t r e e( root- >rchild);

}
}

}

void  make_Queue(nod e  *root,int  paren t)
{

if(root  !=  NULL)
{

node_ct r + + ;
Q[paren t]  =  root;
make_Queue(root- >lchild,pa re n t*2 + 1);
make_Queue(root- >rchild,par e n t*2 + 2);

}
}

delete_node(nod e  *root,  int  paren t)
{

int  index  =  0;
if(root  = =  NULL)

printf("\n  Empty  TREE  ");
else
{

node_ct r  =  0;
make_Queue(root ,0);
index  =  node_ct r- 1;
Q[index]  =  NULL;
parent  =  (index- 1)  /2;
if(  2* paren t  +  1  = =  index  )

Q[paren t]- >lchild  =  NULL;
else

Q[paren t]- >rchild  =  NULL;
}
printf("\n  Node  Deleted  ..");

}

void  inorder(node  *root)
{

if(root  !=  NULL)
{

inorder( root- >lchild);
printf("%3s",root- >da ta );
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inorder( root- >rchild);
}

}

void  preorde r (nod e  *root)
{

if(  root  !=  NULL  )
{

printf("%3s",root- >da ta );
preorde r ( roo t- >lchild);
preorde r ( roo t- >rchild);

}
}

void  postorde r (nod e  *root)
{

if(  root  !=  NULL  )
{

postorde r ( roo t- >lchild);
postorde r ( roo t- >rchild);
printf("%3s",  root- >da t a) ;

}
}

void  print_leaf(node  *root)
{

if(root  !=  NULL)
{

if(root- >lchild  = =  NULL  &&  root- >rchild  = =  NULL)
  printf("%3s  ",root- >da t a) ;
  print_leaf(root- >lchild);
  print_leaf(root- >rchild);

}
}
int  height(node  *root)
{

if(root  = =  NULL)
return  -1;

else
return  (1  +  max(heigh t( root- >lchild),  height(root- >rchild)));

}

void  print_tree(node  *root,  int  line)
{

int  i;
if(root  !=  NULL)
{

print_tree( root- >rchild,line + 1) ;
printf("\n");
for(i=0;i <l ine;i + + )

printf("  ");
printf("%s",  root- >da ta );
print_tree( root- >lchild,line + 1) ;

}
}

void  level_orde r(node  *Q[],int  ctr)
{

int  i;
for(  i =  0;  i <  ctr  ; i++)
{

if(  Q[i]  !=  NULL  )
printf("%5s",Q[i]- >da ta );

}
}

int  menu()
{

int  ch;
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clrscr();
printf("\n  1.  Crea te  Binary  Tree  ");
printf("\n  2.  Inorder  Traversal  ");
printf("\n  3.  Preorde r  Traversal  ");
printf("\n  4.  Postorde r  Traversal  ");
printf("\n  5.  Level  Order  Traversal");
printf("\n  6.  Leaf  Node  ");
printf("\n  7.  Print  Height  of  Tree  ");
printf("\n  8.  Print  Binary  Tree  ");
printf("\n  9.  Delete  a  node  ");
printf("\n  10.  Quit  ");
printf("\n  Enter  Your  choice:  ");
scanf("%d",  &ch);
return  ch;

}

void  main()
{

int  i,ch;
node  *root  =  NULL;
do
{

ch  =  menu();
switch(  ch)
{

case  1  :
if(  root  = =  NULL  )
{

root  =  getnode();
creat e_bina ry t r e e( root);

}
else
{

printf("\n  Tree  is  already  Creat ed  ..");
}
break;

case  2  :
printf("\n  Inorde r  Traversal:  ");
inorder( root);
break;

case  3  :
printf("\n  Preorde r  Traversal:  ");
preorde r ( roo t);
break;

case  4  :
printf("\n  Postorde r  Traversal :  ");
postorde r ( roo t);
break;

case  5:
printf("\n  Level  Order  Traversal  ..");
make_Queue(root ,0);
level_orde r(Q,node_ct r);
break;

case  6  :
printf("\n  Leaf  Nodes:  ");
print_leaf(root);
break;

case  7  :
printf("\n  Height  of  Tree:  %d  ",  height(root));
break;

case  8  :
printf("\n  Print  Tree  \n");
print_tree( root ,  0);
break;

case  9  :
delete_node(root ,0);
break;

case  10  :
exit(0);
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}
getch();

}while(1);
}

Non Recursive Binary Tree Traversal Algorithms:

We  can  also  traverse  a  binary  tree  non  recurs ively  using  stack  data  
structu r e  for  inorder ,  preorde r  and  postorde r .

Inorder  Travers a l:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the 
stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack and
stop when there is no left son of vertex.

2. Pop  and  process  the  nodes  on  stack  if zero  is  popped  then  exit.  If a  
vertex  with  right  son  exists,  then  set  right  son  of  vertex  as  curren t  
vertex  and  return  to  step  one.

Algorith m  inorder()
{

stack[1]  =  0
vertex  =  root

top:     while(ver tex   0)≠
{

push  the  vertex  into  the  stack
vertex  =  leftson(ver t ex)

}

pop  the  element  from  the  stack  and  make  it  as  vertex

while(ver t ex   0)≠
{

print  the  vertex  node
if(rightson(ver t ex)   0)≠
{

vertex  =  rightson(ver t ex)
goto  top

}
pop  the  element  from  the  stack  and  made  it  as  vertex

 }
}

Preorder Traversal: 

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the 
stack is empty:
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1. Proceed down the left most path by pushing the right son of vertex onto stack, if any and
process each vertex. The traversing ends after a vertex with no left child exists. 

2. Pop the vertex from stack, if vertex  0 then return to step one otherwise exit. ≠

Algorith m  preorde r(  )
{
   stack[1]  =  0

vertex  =  root.
   while(ver t ex   0)≠

{
     print  vertex  node
     if(rightson(ver t ex)   0)≠

push  the  right  son  of  vertex  into  the  stack.
                 if(leftson(ver tex)   0)≠

vertex  =  leftson(ver t ex)
     else
     pop  the  element  from  the  stack  and  made  it  as  vertex
}

}

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the 
stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex on to
stack and if vertex has a right son push –(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a negative 
node is popped, then ignore the sign and return to step one. 

Algorith m  postorde r(  )
{

stack[1]  =  0
vertex  =  root

 top:  while(ver tex   0)≠
{

push  vertex  onto  stack
if(rightson(ver t ex)   0)≠

push  – (vertex)  onto  stack
vertex  =  leftson(ver t ex)

}
pop  from  stack  and  make  it  as  vertex
while(ver t ex  >  0)
{
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print  the  vertex  node
pop  from  stack  and  make  it  as  vertex

}
if(vertex  <  0)
{

vertex  =  - (vertex)
goto  top

}
}  

Example 1:

Traverse the following binary tree in pre, post and inorder using non-recursive 
traversing algorithm.

A  

B  

K  L  

E 

G  

C 
� Pr eo r d e r  t r a v e rs a l y ie lds:  
     A ,  B ,  D ,  G ,  K ,  H ,  L ,  M ,  C ,  E 
 
� Po st o r d e r  t r a v a rs a l y ie lds:  
     K ,  G ,  L ,  M ,  H ,  D ,  B ,  E,  C ,  A  
 
� I n o r d e r  t r a v a rs a l y ie lds:  
     K ,  G ,  D ,  L ,  H ,  M ,  B ,  A ,  E,  C  

Bi n a ry  T r e e   Pr e ,  Po st  a n d  I n o r d e r  T r av e r s i n g  

D  

H  

M  

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the 
stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack and 
stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with right son
exists, then set right son of vertex as current vertex and return to step one. 

Current 
vertex

Stack Processed nodes Remarks

A 0 PUSH 0 

0 A B D G K PUSH the left most path of A

K 0 A B D G K POP K

G 0 A B D K G POP G since K has no right son

D 0 A B K G D POP D since G has no right son

H 0 A B K G D Make the right son of D as vertex

H 0 A B H L K G D PUSH the leftmost path of H

L 0 A B H K G D L POP L 

H 0 A B K G D L H POP H since L has no right son

M 0 A B K G D L H Make the right son of H as vertex

0 A B M K G D L H PUSH the left most path of M

147



M 0 A B K G D L H M POP M

B 0 A K G D L H M B POP B since M has no right son

A 0 K G D L H M B A Make the right son of A as vertex

C 0 C E K G D L H M B A PUSH the left most path of C

E 0 C K G D L H M B A E POP E

C 0 K G D L H M B A E C Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the 
stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex on to 
stack and if vertex has a right son push –(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a negative 
node is popped, then ignore the sign and return to step one. 

Current 
vertex

Stack Processed nodes Remarks

A 0 PUSH 0 

0 A –C B D –H G K PUSH the left most path of A with a 
-ve for right sons

0 A –C B D –H K G POP all +ve nodes K and G

H 0 A –C B D K G Pop H

0 A –C B D H –M L K G PUSH the left most path of H with a 
-ve for right sons

0 A –C B D H –M K G L POP all +ve nodes L

M 0 A –C B D H K G L Pop M

0 A –C B D H M K G L PUSH the left most path of M with a 
-ve for right sons

0 A –C K G L M H D B POP all +ve nodes M, H, D and B

C 0 A K G L M H D B Pop C

0 A C E K G L M H D B PUSH the left most path of C with a 
-ve for right sons

0 K G L M H D B E C A POP all +ve nodes E, C and A

0 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the 
stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if any and 
process each vertex. The traversing ends after a vertex with no left child exists. 

2. Pop the vertex from stack, if vertex  0 then return to step one otherwise exit. ≠

Current 
vertex

Stack Processed nodes Remarks

A 0 PUSH 0 

0 C H A B D G K PUSH the right son of each vertex onto stack 
and process each vertex in the left most path
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H 0 C A B D G K POP H

0 C M A B D G K H L PUSH the right son of each vertex onto stack 
and process each vertex in the left most path

M 0 C A B D G K H L POP M

0 C A B D G K H L M
PUSH the right son of each vertex onto stack 
and process each vertex in the left most path; 
M has no left path

C 0 A B D G K H L M Pop C

0 A B D G K H L M C E
PUSH the right son of each vertex onto stack 
and process each vertex in the left most path; 
C has no right son on the left most path

0 A B D G K H L M C E Stop since stack is empty

Example 2:

Traverse the following binary tree in pre, post and inorder using non-recursive 
traversing algorithm.

2  

7  

6  2  9  

5  

5  

� Pr eo r d e r  t r a v e rs a l y ie lds:  
     2 ,  7 ,  2 ,  6 ,  5 ,  1 1 ,  5 ,  9 ,  4   
 
� Po st o r d e r  t r a v a rs a l y ie lds:  
     2 ,  5 ,  1 1 ,  6 ,  7 ,  4 ,  9 ,  5 ,  2   
 
� I n o r d e r  t r a v a rs a l y ie lds:  
     2 ,  7 ,  5 ,  6 ,  1 1 ,  2 ,  5 ,  4 ,  9  

Bi n a ry  T r e e   Pr e ,  Po st  a n d  I n  o r d e r  T r av e r s i n g  

4  1 1  

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the 
stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack and
stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with right son
exists, then set right son of vertex as current vertex and return to step one. 

Current 
vertex

Stack Processed nodes Remarks

2 0

0 2 7 2

2 0 2 7 2

7 0 2 2 7

6 0 2 6 5 2 7

5 0 2 6 2 7 5 

11 0 2 2 7 5 6 11
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5 0 5 2 7 5 6 11 2

9 0 9 4 2 7 5 6 11 2 5

4 0 9 2 7 5 6 11 2 5 4

0 2 7 5 6 11 2 5 4 9 Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the 
stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex on to
stack and if vertex has a right son push –(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a negative 
node is popped, then ignore the sign and return to step one. 

Current 
vertex

Stack Processed nodes Remarks

2 0

0 2 –5 7 –6 2

2 0 2 –5 7 –6 2

6 0 2 –5 7 2 

0 2 –5 7 6 –11 5 2

5 0 2 –5 7 6 –11 2 5

11 0 2 –5 7 6 11 2 5

0 2 –5 2 5 11 6 7

5 0 2 5 –9 2 5 11 6 7

9 0 2 5 9 4 2 5 11 6 7 

0 2 5 11 6 7 4 9 5 2 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the 
stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if any and
process each vertex. The traversing ends after a vertex with no left child exists. 

2. Pop the vertex from stack, if vertex  0 then return to step one otherwise exit. ≠

Current 
vertex

Stack Processed nodes Remarks

2 0

0 5 6 2 7 2

6 0 5 11 2 7 2 6 5

11 0 5 2 7 2 6 5 

0 5 2 7 2 6 5 11

5 0 9 2 7 2 6 5 11 

9 0 2 7 2 6 5 11 5 

0 2 7 2 6 5 11 5 9 4 Stop since stack is empty
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7.4. Expression Trees:

Expression tree is a binary tree, because all of the operations are binary. It is also possible for a node
to have only one child, as is the case with the unary minus operator. The leaves of an expression tree
are operands, such as constants or variable names, and the other (non leaf) nodes contain operators.

Once an expression tree is constructed we can traverse it in three ways:

 Inorder Traversal
 Preorder Traversal
 Postorder Traversal

Figure 7.4.1 shows some more expression trees that represent arithmetic expressions given in infix 
form.

/  

b  

+  

c  a  

+  

d  

+  

+  

c +  

d  

b  a  

-  

+  *  

/  

+  +  

x  a  

*  

y  a  c  b  

( a )   ( a  +  b )  +  ( c  /  d )  

( c )   ( ( - a )  +  ( x  +  y ) )  /  ( ( + b )  *  ( c  *  a ) )  

( b )   ( ( a  +  b )  +  c )  +  d  

Fi g u r e  7 . 4 . 1   Ex p r e s s i o n  T r e e s  

An expression tree can be generated for the infix and postfix expressions.

An algorithm to convert a postfix expression into an expression tree is as follows:

1. Read the expression one symbol at a time. 

2. If the symbol is an operand, we create a one-node tree and push a pointer to it onto a
stack. 

3. If the symbol is an operator, we pop pointers to two trees T1 and T2 from the stack (T1 is
popped first) and form a new tree whose root is the operator and whose left and right
children point to T2 and T1 respectively. A pointer to this new tree is then pushed onto
the stack.

Example 1:

Construct an expression tree for the postfix expression: a b + c d e + * * 

The first two symbols are operands, so we create one-node trees and push pointers to them onto a 
stack.
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a  b  

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it is 
pushed onto the stack. 

a  b  

+  

b  

Next, c, d, and e are read, and for each one–node tree is created and a pointer to the corresponding 
tree is pushed onto the stack.

a  b  

+  

b  c  d  e  

Now a ‘+’ is read, so two trees are merged. 

a  b  

+  

b  

c  

d  e  

+  +  

Continuing, a ‘*’ is read, so we pop two tree pointers and form a new tree with a ‘*’ as root.

a  

+  

b  c  

d  e  

+  

+  

e  

*  

Finally, the last symbol is read, two trees are merged, and a pointer to the final tree is left on the 
stack. 
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a  

+  

b  c 

d  
e  

+  

+  

e  

*  

*  

For the above tree:

Inorde r  form  of  the  expression:  a  +  b  * c  * d  +  e

Preorde r  form  of  the  expression:  * +  a  b  * c  +  d  e

Postorde r  form  of  the  expression:  a  b  +  c  d  e  +  * *

Example 2:

Construct an expression tree for the arithmetic expression:

(A + B * C) – ((D * E + F) / G)

Solution:

First convert the infix expression into postfix notation.

Postfix notation of the arithmetic expression is:  A B C * + D E * F + G / - 

The first three symbols are operands, so we create one-node trees and pointers to three nodes 
pushed onto the stack.

A  B  C 

Next, a ‘*’ is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it is 
pushed onto the stack. 

B  

A  *  

C  

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it is 
pushed onto the stack.
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B  

A  
*  

C  

+  

Next, D and E are read, and for each one–node tree is created and a pointer to the corresponding 
tree is pushed onto the stack.

B  

A  
*  

C  

+  E D  

Continuing, a ‘*’ is read, so we pop two tree pointers and form a new tree with a ‘*’ as root.

A  

B  C 

D  

+  

*  E 

*  

Proceeding similar to the previous steps, finally, when the last symbol is read, the expression tree is 
as follows: 
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A  

+  

B  

*  G  

C 

+  /  

*  

-  

+  

F 

D  E 

       UNIT- 5              GRAPHS

Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges. We will often
denote n = |V|, e = |E|.

A graph  is  genera lly  displayed  as  figure  7.5.1,  in  which  the  vertices  are
repres e n t e d  by  circles  and  the  edges  by  lines.  

An  edge  with  an  orienta t ion  (i.e.,  arrow  head)  is  a  direc ted  edge,  while
an  edge  with  no  orienta t ion  is  our  undirec te d  edge.  

If  all  the  edges  in  a  graph  are  undirec te d ,  then  the  graph  is  an
undirect e d  graph.  The  graph  of  figures  7.5.1(a)  is  undirec t e d  graphs.  If
all  the  edges  are  direc ted;  then  the  graph  is  a  direc ted  graph.  The  graph
of  figure  7.5.1(b)  is  a  directed  graph.  A direc ted  graph  is  also  called  as
digraph.  

A graph  G is  connecte d  if  and  only  if  there  is  a  simple  path  between  any
two  nodes  in  G.  

A graph  G is  said  to  be  complet e  if every  node  a  in  G is  adjacen t  to  every
other  node  v  in  G.  A complete  graph  with  n  nodes  will  have  n(n- 1)/2
edges.  For  example,  Figure  7.5.1.(a)  and  figure  7.5.1.(d)  are  complete
graphs.

155



A directed  graph  G is  said  to  be  connecte d ,  or  strongly  connec ted ,  if  for
each  pair  u,  v  for  nodes  in  G  there  is  a  path  from  u  to  v  and  there  is  a
path  from  v  to  u.  On  the  other  hand,  G  is  said  to  be  unilate r ally
connected  if for  any  pair  u,  v of  nodes  in  G there  is  a  path  from  u  to  v or
a  path  from  v to  u.  For  example,  the  digraph  shown  in  figure  7.5.1  (e)  is
strongly  connec ted .

A  B  

C D  

E 

B  D  

G  E C 

F 

A  

Fi g u r e  7 . 5 . 1  V a r i o u s Gr a p h s  

( b )  ( a )  

 
v 4  

 

 
v 2  

 

 
v 3  

 

 
v 1  

 

( d )  

 
v 4  

 

 
v 2  

 

 
v 3  

 

 
v 1  

 

( c )  

( f )  

 
v 4  

 

 
v 2  

 

 
v 3  

 

 
v 1  

 
v 1  

v 2  v 3  

v 4  v 5  v 6  v 7  
( g )  ( e )  

 
v 4  

 

 
v 2  

 

 
v 3  

 

 
v 1  

 

We can assign weight function to the edges: wG (e) is a weight of edge e  E. The graph which has
such function assigned is called weighted graph.

The number of incoming edges to a vertex v is called in–degree of the vertex (denote indeg(v)). The
number of outgoing edges from a vertex is called out-degree (denote outdeg(v)). For example, let us
consider the digraph shown in figure 7.5.1(f),

indegree(v1) = 2outdegree(v1) = 1

indegree(v2) = 2outdegree(v2) = 0

A path is a sequence of vertices (v1, v2, . . . . . . , vk), where for all i, (vi, vi+1)  E. A path is simple if all
vertices in the path are distinct. If there a path containing one or more edges which starts from a
vertex Vi and terminates into the same vertex then the path is known as a cycle. For example, there is
a cycle in figure 7.5.1 (a), figure 7.5.1 (c) and figure 7.5.1 (d). 

If a graph (digraph) does not have any cycle then it is called acyclic graph. For example, the graphs
of figure 7.5.1 (f) and figure 7.5.1 (g) are acyclic graphs.

A graph G’ = (V’, E’) is a sub-graph of graph G = (V, E) iff V’   V and E’   E.

A Forest is a set of disjoint trees. If we remove the root node of a given tree then it becomes forest.
The following figure shows a forest F that consists of three trees T1, T2 and T3. 
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A graph that has either self loop or parallel edges or both is called multi-graph. 

Tree is a connected acyclic graph (there aren’t any sequences of edges that go around in a loop). A
spanning tree of a graph G = (V, E) is a tree that contains all vertices of V and is a subgraph of G. A
single graph can have multiple spanning trees. 

Let T be a spanning tree of a graph G. Then 

1. Any two vertices in T are connected by a unique simple path. 

2. If any edge is removed from T, then T becomes disconnected. 

3. If we add any edge into T, then the new graph will contain a cycle.

4. Number of edges in T is n-1.

Representation of Graphs:

There are two ways of representing digraphs. They are:

 Adjacency matrix.

 Adjacency List.

 Incidence matrix.

Adjacency matrix:

In this representation, the adjacency matrix of a graph G is a two dimensional n x n matrix, say A =
(ai,j), where






otherwise

vtovfromedgeanisthereif
a ji

ji
0

1
,

The matrix is symmetric in case of undirected graph, while it  may be asymmetric if  the graph is
directed. This matrix is also called as Boolean matrix or bit matrix.

1  

4  

3  2  

5  

Fi g u r e  7 . 5 . 2 .  A g r a p h  a n d  it s  A d j a c e n c y  m a t r i x  
 

G 1 :  

( a )  

Figure 7.5.2(b) shows the adjacency matrix representation of the graph G1 shown in figure 7.5.2(a).
The  adjacency  matrix  is  also  useful  to  store  multigraph  as  well  as  weighted  graph.  In  case  of

A

DB

EC F

Q

P

R

X

Y

Z
T2 T3T1

A F or e s t  F

1 2 3 4 5
1 0 1 1 0 1
2 0 0 1 1 1
3 0 0 0 1 0
4 0 0 0 0 0
5 0 0 1 1 0

(b)
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multigraph representation, instead of entry 0 or 1, the entry will be between number of edges between
two vertices. 

In case of weighted graph, the entries are weights of the edges between the vertices. The adjacency
matrix  for  a  weighted  graph  is  called  as  cost  adjacency  matrix.  Figure  7.5.3(b)  shows  the  cost
adjacency matrix representation of the graph G2 shown in figure 7.5.3(a).

B  D  

G  E C 

F 

A  
6  

3  2  

4  

1  

2  1  

4  

1  

2  

4  

2  

Fi g u r e  7 . 5 . 3  W e i g h t e d  g r a p h  a n d  it s  Co s t  a d j ac e nc y  m a t r i x   

( a )  

  

Adjace n cy  List : 

In  this  repres en t a t ion ,  the  n  rows  of  the  adjacency  matrix  are
repres e n t e d  as  n  linked  lists.  An  array  Adj[1,  2,  .  .  .  .  .  n]  of  pointer s
where  for  1  <  v  <  n,  Adj[v]  points  to  a  linked  list  containing  the  vertices
which  are  adjacen t  to  v (i.e.  the  vertices  that  can  be  reached  from  v by  a
single  edge).  If  the  edges  have  weights  then  these  weights  may  also  be
stored  in  the  linked  list  element s .  For  the  graph  G in  figure  7.5.2  (a),  the
adjacency  list  in  shown  in  figure  7.5.4  (b).

1  

0  

1  1  

0  1  

0  0  1  

3  2  1  

1  

3  

2  

1  

2  

3  

3  

3  1  2  

2  

( a )   A d j ac e nc y  M a t r i x  ( b )   A d j ac e nc y  L i s t  

Fi g u r e  7 . 5 . 4  A d j ac e n c y  m a t r i x  a n d  a d j ac e nc y  l i s t  

Incidence Matrix:

In this representation, if G is a graph with n vertices, e edges and no self loops, then incidence matrix
A is defined as an n by e matrix, say A = (ai,j), where






otherwise

vtoincidentjedgeanisthereif
a i

ji
0

1
,

Here, n rows correspond to n vertices and e columns correspond to e edges. Such a matrix is called
as vertex-edge incidence matrix or simply incidence matrix.

A B C D E F G
A 0 3 6    
B 3 0 2 4   
C 6 2 0 1 4 2 
D  4 1 0 2  4
E   4 2 0 2 1
F   2  2 0 1
G    4 1 1 0

G2:

(b)
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B  D  

G  E C 

F 

A  
g  

a  b  

c  

d  

k  l  

f  

i  

e  

h  

j  

Fi g u r e  7 . 5 . 4  Gr a p h  a n d  it s  i nc i d e nc e  m a t r i x   

( a )  

  

( b )  

Figure 7.5.4(b) shows the incidence matrix representation of the graph G1 shown in figure 7.5.4(a).

7.6. Minimum Spanning Tree (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the vertex set of the 
given graph, and whose edge set is a subset of the edge set of the given graph. i.e., any connected 
graph will have a spanning tree. 

Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum spanning tree (MST)
is a spanning tree with the smallest possible weight. 

Example: 

G:  

A g r a p h  G:  
T h r e e  ( o f  m a n y  p o s s i b l e )  s p a n n i n g  t r e e s f r o m  g r a p h  G:  

5  

2  

4  

6  

1  

3  

A w e i g h t e d  g r a p h  G:  T h e  m i n i m a l  s p a n n i n g  t r e e  f r o m  w e i g h t e d  g r a p h  G:  

2  

3  

1  

G:  

Let's consider a couple of real-world examples on minimum spanning tree: 

 One practical application of a MST would be in the design of a network. For instance, a
group  of individuals,  who  are  separated  by  varying  distances,  wish  to  be  connected
together in a telephone network.  Although MST cannot do anything about the distance
from one connection to another, it can be used to determine the least cost paths with no
cycles in this network, thereby connecting everyone at a minimum cost.

 Another useful  application of MST would be finding airline routes. The vertices of the
graph would represent cities, and the edges would represent routes between the cities. 
MST can be applied to optimize airline routes by finding the least costly paths with no
cycles. 

Minimum spanning tree, can be constructed using any of the following two algorithms: 

a b c d e f g h i j k l
A 1 0 0 0 0 0 1 0 0 0 0 0
B 1 1 1 0 0 0 0 0 0 0 0 0
C 0 1 0 1 0 0 1 1 0 0 1 0
D 0 0 1 1 1 1 0 0 0 0 0 0
E 0 0 0 0 1 0 0 1 1 1 0 0
F 0 0 0 0 0 0 0 0 0 1 1 1
G 0 0 0 0 0 1 0 0 1 0 0 1
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1. Kruskal’s algorithm and 

2. Prim algorithm. 

Both algorithms differ in their methodology, but both eventually end up with the MST. Kruskal's 
algorithm uses edges, and Prim’s algorithm uses vertex connections in determining the MST. 

7.6.1. Kruskal’s Algorithm 

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. picking an edge with
the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the shortest 
(least cost) edge, while avoiding the creation of cycles, until (n - 1) edges have been added. 
Sometimes two or more edges may have the same cost. 

The order in which the edges are chosen, in this case, does not matter. Different MST’s may result, 
but they will all have the same total cost, which will always be the minimum cost. 

Kruskal’s Algorithm for minimal spanning tree is as follows:

1. Make  the  tree  T empty.  

2. Repea t  the  steps  3,  4  and  5  as  long  as  T  contains  less  than  n  - 1
edges  and  E  is  not  empty  otherwise,  proceed  to  step  6.

3. Choose  an  edge  (v,  w)  from  E of  lowest  cost.

4. Delete  (v,  w)  from  E.

5. If (v,  w)  does  not  crea te  a  cycle  in  T 

then  Add  (v,  w)  to  T

else  discard  (v,  w)

6. If T contains  fewer  than  n  - 1  edges  then  print  no  spanning  tree.

Exampl e  1:

Construc t  the  minimal  spanning  tree  for  the  graph  shown  below:

 
 3 

5 

2 1 

6 

4 

15 

50 10 

30 

20 

         35 
45        40 

25 
55 

Arrange  all  the  edges  in  the  increasing  order  of  their  costs:

Cost 10 15 20 25 30 35 40 45 50 55
Edge (1,  2) (3,  6) (4,  6) (2,  6) (1,  4) (3,  5) (2,  5) (1,  5) (2,  3) (5,  6)

The  stages  in  Kruskal’s  algorithm  for  minimal  spanning  tree  is  as  follows:
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Edge Cost Stag e s  in  Kruskal’s  algori t h m Remark s

(1,  2) 10
2  1  

3  

4  
5  

6  

The  edge  between  vertices  1  and  2  is  the
first  edge  selected .  It  is  included  in  the
spanning  tree.

(3,  6) 15
2  1  

6  

5  

3  

4  

Next,  the  edge  betwee n  vertices  3  and  6
is  selected  and  included  in  the  tree.

(4,  6) 20
2  1  

6  

5  

3  

4  

The  edge  between  vertices  4  and  6  is
next  included  in  the  tree.

(2,  6) 25
2  1  

6  

5  

3  

4  

The  edge  between  vertices  2  and  6  is
considere d  next  and  included  in  the  tree.

(1,  4) 30 Reject The  edge  between  the  vertices  1  and  4  is
discarded  as  its  inclusion  crea te s  a  cycle.

(3,  5) 35
2  1  

6  

5  

3  

4  

Finally,  the  edge  between  vertices  3  and
5  is  considere d  and  included  in  the  tree
built.  This  complet es  the  tree.  

The  cost  of  the  minimal  spanning  tree  is
105 .

Exampl e  2:

Construc t  the  minimal  spanning  tree  for  the  graph  shown  below:

1  

2  

3  

6  

5  

4  

7  

2 8  

1 0  

1 6  

1 2  

2 2  

2 5  
2 4  

1 4  

1 8  

Solut i o n:
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Arrange  all  the  edges  in  the  increasing  order  of  their  costs:

Cost 10 12 14 16 18 22 24 25 28
Edge (1,  6) (3,  4) (2,  7) (2,  3) (4,  7) (4,  5) (5,  7) (5,  6) (1,  2)

The  stages  in  Kruskal’s  algorithm  for  minimal  spanning  tree  is  as  follows:

Edge Cost Stag e s  in  Kruskal’s  algori t h m Remark s

(1,  6) 10
2  

1  

3  

4  

5  

6  

7  

The  edge  between  vertices  1  and  6  is  the
first  edge  selected .  It  is  included  in  the
spanning  tree.

(3,  4) 12
2  

1  

3  

4  

5  

6  

7  

Next,  the  edge  betwee n  vertices  3  and  4
is  selected  and  included  in  the  tree.

(2,  7) 14
2  

1  

3  

4  

5  

6  

7  

The  edge  between  vertices  2  and  7  is
next  included  in  the  tree.

(2,  3) 16
2  

1  

3  

4  

5  

6  

7  

The  edge  between  vertices  2  and  3  is
next  included  in  the  tree.

(4,  7) 18 Reject The  edge  between  the  vertices  4  and  7  is
discarded  as  its  inclusion  crea te s  a  cycle.

(4,  5) 22
2  

1  

3  

4  

5  

6  

7  

The  edge  between  vertices  4  and  7  is
considere d  next  and  included  in  the  tree.

(5,  7) 24 Reject The  edge  between  the  vertices  5  and  7  is
discarded  as  its  inclusion  crea te s  a  cycle.
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(5,  6) 25
2  

1  

3  

4  

5  

6  

7  

Finally, the edge between vertices 5 and 6 is 
considered and included in the tree built. This 
completes the tree.

The  cost  of  the  minimal  spanning  tree  is
99 .

7.6.2 . Reach a b i l i ty  Matrix  (Warshall’s  Algorithm) :

Warshall’s  algori thm  requires  to  know  which  edges  exist  and  which  do
not.  It  doesn’t  need  to  know  the  lengths  of  the  edges  in  the  given
directed  graph.  This  informa tion  is  convenien tly  displayed  by  adjacency
matrix  for  the  graph,  in  which  a  ‘1’  indicates  the  existence  of  an  edge
and  ‘0’ indicate s  non- existence .  

A d j ac e nc y  M a t r i x  W a r s h a l l ’ s  A l g o r it h m  
A l l Pa ir s  Rec h a b i l i t y   

M a t r i x  

It  begins  with  the  adjacency  matrix  for  the  given  graph,  which  is  called
A0 ,  and  then  updates  the  matrix  ‘n’  times,  producing  matrices  called  A 1 ,
A2 , . . . . . , An  and  then  stops.  

In  warshall’s   algorithm  the  matrix  Ai merely  contains  information  about
the  existence  of  i – paths.  A 1  entry  in  the  matrix  A i will  correspond  to  the
existence  of  an  i  – paths  and  O  entry  will  correspond  to  non- existence .
Thus  when  the  algorithm  stops,  the  final  matrix,  the  matrix  An ,  contains
the  desired  connec tivity  information.  

A 1  entry  indicates  a  pair  of  vertices,  which  are  connec ted ,  and  O  entry
indicates  a  pair,  which  are  not.  This  matrix  is  called  a  reachabili ty  matrix
or  path  matrix  for  the  graph.  It  is  also  called  the  transi tive  closure  of  the
original  adjacency  matrix.  

The  update  rule  for  computing  Ai from  Ai-1  in  warshall’s  algorithm  is:  

Ai [x,  y] =  Ai-1  [x,  y] ۷ (Ai-1  [x,  i] ٨ Ai-1  [i,  y])  ----        (1)

Exampl e  1:  

Use  warshall’s  algorithm  to  calcula te  the  reachabili ty  matrix  for  the
graph:  

163



3  2  

1  4  

1 1  

4  

7  

7  

5  

1  

6  

We  begin  with  the  adjacency  matrix  of  the  graph  ‘A0’























0111

0000

1100

0110

4

3

2

1

0A

The  first  step  is  to  compute  ‘A1’ matrix.  To  do  so  we  will  use  the  updating
rule  – (1).

Before  doing  so  we  notice  that  only  1  entry  in  A0  must  remain  1  in  A1 ,
since  in  Boolean  algebra  1  +  (any  thing)  =  1.  Since  these  are  only  nine  0
entries  in  A0 , there  are  only  nine  entries  in  A0 that  need  to  be  updated .  

A1[1,  1]  =  A0[1,  1]  ۷ (A0[1,  1]  ٨ A0[1,  1])  =  0  ۷  (0  ٨ 0)  =  0

A1[2,  1]  =  A0[2,  1]  ۷ (A0[2,  1]  ٨ A0[1,  1])  =  0  ۷  (0  ٨ 0)  =  0

A1[2,  2]  =  A0[2,  2]  ۷ (A0[2,  1]  ٨ A0[1,  2])  =  0  ۷  (0  ٨ 1)  =  0

A1[3,  1]  =  A0[3,  1]  ۷ (A0[3,  1]  ٨ A0[1,  1])  =  0  ۷  (0  ٨ 0)  =  0

A1[3,  2]  =  A0[3,  2]  ۷ (A0[3,  1]  ٨ A0[1,  2])  =  0  ۷  (0  ٨ 1)  =  0

A1[3,  3]  =  A0[3,  3]  ۷ (A0[3,  1]  ٨ A0[1,  3])  =  0  ۷  (0  ٨ 1)  =  0

A1[3,  4]  =  A0[3,  4]  ۷ (A0[3,  1]  ٨ A0[1,  4])  =  0  ۷  (0  ٨ 0)  =  0

A1[4,  4]  =  A0[4,  4]  ۷ (A0[4,  1]  ٨ A0[1,  4])  =  0  ۷  (1  ٨ 0)  =  0
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1100
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4
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2

1

1A

Next,  A2  must  be  calcula ted  from  A1;  but  again  we  need  to  upda te  the  0
entries,  

A2[1,  1]  =  A1[1,  1]  ۷ (A1[1,  2]  ٨ A1[2,  1])  =  0  ۷  (1  ٨ 0)  =  0

A2[1,  4]  =  A1[1,  4]  ۷ (A1[1,  2]  ٨ A1[2,  4])  =  0  ۷  (1  ٨ 1)  =  1

A2[2,  1]  =  A1[2,  1]  ۷ (A1[2,  2]  ٨ A1[2,  1])  =  0  ۷  (0  ٨ 0)  =  0

A2[2,  2]  =  A1[2,  2]  ۷ (A1[2,  2]  ٨ A1[2,  2])  =  0  ۷  (0  ٨ 0)  =  0

A2[3,  1]  =  A1[3,  1]  ۷ (A1[3,  2]  ٨ A1[2,  1])  =  0  ۷  (0  ٨ 0)  =  0

A2[3,  2]  =  A1[3,  2]  ۷ (A1[3,  2]  ٨ A1[2,  2])  =  0  ۷  (0  ٨ 0)  =  0
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A2[3,  3]  =  A1[3,  3]  ۷ (A1[3,  2]  ٨ A1[2,  3])  =  0  ۷  (0  ٨ 1)  =  0

A2[3,  4]  =  A1[3,  4]  ۷ (A1[3,  2]  ٨ A1[2,  4])  =  0  ۷  (0  ٨ 1)  =  0

A2[4,  4]  =  A1[4,  4]  ۷ (A1[4,  2]  ٨ A1[2,  4])  =  0  ۷  (1  ٨ 1)  =  1
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This  matrix  has  only  seven  0  entries,  and  so  to  compute  A3 , we  need  to  do
only  seven  computa t ions .  

A3[1,  1]  =  A2[1,  1]  ۷ (A2[1,  3]  ٨ A2[3,  1])  =  0  ۷  (1  ٨ 0)  =  0   

A3[2,  1]  =  A2[2,  1]  ۷ (A2[2,  3]  ٨ A2[3,  1])  =  0  ۷  (1  ٨ 0)  =  0   

A3[2,  2]  =  A2[2,  2]  ۷ (A2[2,  3]  ٨ A2[3,  2])  =  0  ۷  (1  ٨ 0)  =  0   

A3[3,  1]  =  A2[3,  1]  ۷ (A2[3,  3]  ٨ A2[3,  1])  =  0  ۷  (0  ٨ 0)  =  0

A3[3,  2]  =  A2[3,  2]  ۷ (A2[3,  3]  ٨ A2[3,  2])  =  0  ۷  (0  ٨ 0)  =  0

A3[3,  3]  =  A2[3,  3]  ۷ (A2[3,  3]  ٨ A2[3,  3])  =  0  ۷  (0  ٨ 0)  =  0

A3[3,  4]  =  A2[3,  4]  ۷ (A2[3,  3]  ٨ A2[3,  4])  =  0  ۷  (0  ٨ 0)  =  0
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Once  A3  is  calcula t ed ,  we  use  the  upda te  rule  to  calcula te  A4  and  stop.
This  matrix  is  the  reachabili ty  matrix  for  the  graph.

A4[1,  1]  =  A3  [1,  1]  ۷ (A3 [1,  4]  ٨ A3  [4,  1])  =  0  ۷ (1  ٨ 1)  =  0   ۷ 1  =  1

A4[2,  1]  =  A3  [2,  1]  ۷ (A3 [2,  4]  ٨ A3  [4,  1])  =  0  ۷ (1  ٨ 1)  =  0   ۷ 1  =  1

A4[2,  2]  =  A3  [2,  2]  ۷ (A3 [2,  4]  ٨ A3  [4,  2])  =  0  ۷ (1  ٨ 1)  =  0   ۷ 1  =  1

A4[3,  1]  =  A3  [3,  1]  ۷ (A3 [3,  4]  ٨ A3  [4,  1])  =  0  ۷ (0  ٨ 1)  =  0   ۷ 0 =  0

A4[3,  2]  =  A3  [3,  2]  ۷ (A3 [3,  4]  ٨ A3  [4,  2])  =  0  ۷ (0  ٨ 1)  =  0   ۷ 0  =  0

A4[3,  3]  =  A3  [3,  3]  ۷ (A3 [3,  4]  ٨ A3  [4,  3])  =  0  ۷ (0  ٨ 1)  =  0   ۷ 0  =  0

A4[3,  4]  =  A3  [3,  4]  ۷ (A3 [3,  4]  ٨ A3  [4,  4])  =  0  ۷ (0  ٨ 1)  =  0   ۷ 0  =  0
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Note  that  according  to  the  algorithm  vertex  3  is  not  reachable  from  itself
1.  This  is  because  as  can  be  seen  in  the  graph,  there  is  no  path  from
vertex  3  back  to  itself.  

7.6.3 . Travers in g  a  Graph:

Many graph algorithms require one to systematically examine the nodes and edges of a graph G. 
There are two standard ways to do this. They are:

 Breadth first traversal (BFT)

 Depth first traversal (DFT) 

The BFT will use a queue as an auxiliary structure to hold nodes for future processing and the DFT 
will use a STACK.

During  the  execution  of  these  algorithms,  each  node  N  of  G will  be  in  one
of  three  states ,  called  the  status  of N,  as  follows:

1. STATUS = 1 (Ready state): The initial state of the node N.

2. STATUS  =  2  (Waiting  state):  The  node  N  is  on  the  QUEUE  or
STACK,  waiting  to  be  processed .

3. STATUS  =  3  (Process ed  state):  The  node  N  has  been  processed .  

Both  BFS  and  DFS  impose  a  tree  (the  BFS/DFS  tree)  on  the  structu r e  of
graph.  So,  we  can  compute  a  spanning  tree  in  a  graph.  The  computed
spanning  tree  is  not  a  minimum  spanning  tree.  The  spanning  trees
obtained  using  depth  first  searches  are  called  depth  first  spanning  trees .
The  spanning  trees  obtained  using  bread t h  first  searches  are  called
Breadth  first  spanning  trees.

Breadt h  first  searc h  and  travers a l:

The  general  idea  behind  a  bread th  first  travers a l  beginning  at  a  star ting
node  A  is  as  follows.  First  we  examine  the  star ting  node  A.  Then  we
examine  all  the  neighbors  of  A.  Then  we  examine  all  the  neighbors  of
neighbor s  of  A.  And  so  on.  We  need  to  keep  track  of  the  neighbors  of  a
node,  and  we  need  to  guaran t e e  that  no  node  is  process ed  more  than
once.  This  is  accomplished  by  using  a  QUEUE  to  hold  nodes  that  are
waiting  to  be  process ed ,  and  by  using  a  field  STATUS  that  tells  us  the
curren t  status  of  any  node.  The  spanning  trees  obtained  using  BFS  are
called  Bread th  first  spanning  trees.  

Breadth first traversal algorithm on graph G is as follows:

This algorithm executes a BFT on graph G beginning at a starting node A.
 

1. Initialize  all  nodes  to  the  ready  state  (STATUS  =  1).

2. Put  the  star ting  node  A in  QUEUE  and  change  its  status  to  the
waiting  state  (STATUS  =  2).
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3. Repea t  the  following  steps  until  QUEUE  is  empty:

a. Remove  the  front  node  N  of  QUEUE.  Process  N  and  change
the  status  of  N  to  the  processed  state  (STATUS  =  3).

b. Add  to  the  rear  of  QUEUE  all  the  neighbors  of  N  that  are  in
the  ready  state  (STATUS  =  1),  and  change  their  status  to  the
waiting  state  (STATUS  =  2).

4. Exit.  

Depth  first  searc h  and  traversa l:

Depth  first  search  of  undirec t e d  graph  proceeds  as  follows:  First  we
examine  the  star ting  node  V. Next  an  unvisited  vertex  'W'  adjacen t  to  'V'
is  selected  and  a  depth  first  search  from  'W'  is  initiated.  When  a  vertex
'U'  is  reached  such  that  all  its  adjacen t  vertices  have  been  visited,  we
back  up  to  the  last  vertex  visited,  which  has  an  unvisited  vertex  'W'
adjacen t  to  it  and  initiate  a  depth  first  search  from  W.  The  search
termina te s  when  no  unvisited  vertex  can  be  reache d  from  any  of  the
visited  ones.  

This  algori thm  is  similar  to  the  inorder  travers a l  of  binary  tree.  DFT
algorithm  is  similar  to  BFT  except  now  use  a  STACK  instead  of  the
QUEUE.  Again  field  STATUS  is  used  to  tell  us  the  curren t  status  of  a
node.  

The  algorithm  for  depth  first  traversa l  on  a  graph  G is  as  follows.

This algorithm executes a DFT on graph G beginning at a starting node A.

1.  Initialize  all  nodes  to  the  ready  state  (STATUS  =  1).

2. Push  the  star ting  node  A into  STACK  and  change  its  status  to  the
waiting  state  (STATUS  =  2).

3. Repea t  the  following  steps  until  STACK  is  empty:

a. Pop  the  top  node  N  from  STACK.  Process  N  and  change  the
status  of  N  to  the  processe d  state  (STATUS  =  3).

b. Push  all  the  neighbors  of  N  that  are  in  the  ready  state
(STATUS  =  1),  and  change  their  status  to  the  waiting  state
(STATUS  =  2).

4. Exit.  

Example 1:

Consider the graph shown below. Traverse the graph shown below in breadth first order and depth 
first order. 
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A  

C B  F 

G  E D  

K  J 

A Gr a p h  G  

Breadt h - first  searc h  and  travers a l:

The steps involved in breadth first traversal are as follows:

Curre
nt

Node
QUEUE

Processed
Nodes

Status

A B C D E F G J K

1 1 1 1 1 1 1 1 1

A 2 1 1 1 1 1 1 1 1

A F  C B A 3 2 2 1 1 2 1 1 1

F C B D A F 3 2 2 2 1 3 1 1 1

C
B D E  
G

A F  C 3 2 3 2 2 3 2 1 1

B D E G A F  C B 3 3 3 2 2 3 2 1 1

D E G J A F  C B D 3 3 3 3 2 3 2 2 1

E G J K A F  C B D E 3 3 3 3 3 3 2 2 2

G J K A F  C B D E G 3 3 3 3 3 3 3 2 2

J K A F  C B D E G J 3 3 3 3 3 3 3 3 2

K EMPTY
A F  C  B D E  G J
K

3 3 3 3 3 3 3 3 3

For the above graph the Breadth first traversal sequence is: A F C B D E G J K.
 

Depth-first search and traversal:

The steps involved in depth first traversal are as follows:

Curre
nt

Node
Stack

Processed
Nodes

Status

A B C D E F G J K

1 1 1 1 1 1 1 1 1
A 2 1 1 1 1 1 1 1 1

A B C F A 3 2 2 1 1 2 1 1 1
F B C D A F 3 2 2 2 1 3 1 1 1

Nod
e

Adjac e n c y
Lis t

A F,  C,  B

B A, C,  G

C
A,  B,  D,  E,  F,
G

D C,  F,  E,  J

E C,  D,  G,  J, K

F A, C,  D

G B, C,  E,  K

J D, E,  K

K E,  G,  JAdjacency  list  for  graph  G
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D B C E J A F  D 3 2 2 3 2 3 1 2 1
J B  C  E

K
A F  D J

3 2 2 3 2 3 1 3 2

K B  C  E
G

A F  D J K
3 2 2 3 2 3 2 3 3

G B C E A F  D J K G 3 2 2 3 2 3 3 3 3
E B C A F  D J K G E 3 2 2 3 3 3 3 3 3
C B A F  D J K G E C 3 2 3 3 3 3 3 3 3
B EMPTY A F  D J K G E  C

B
3 3 3 3 3 3 3 3 3

For the above graph the Depth first traversal sequence is: A F D J K G E C B.

Exampl e  2:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first
and depth first spanning trees.
 

A 

D 

F 

B C G 

H I  

J K 

L M 
 

E 

The Graph G 

If  the  depth  first  travers a l  is  initiated  from  vertex  A, then  the  vertices  of
graph  G are  visited  in  the  order:  A F E D  G  L J K  M  H  I C  B . The  depth
first  spanning  tree  is  shown  in  the  figure  given  below:

A  

B  F  

D  

E  

G  

L  H  C  

J I  

K  M  

D e p t h  f i r s t  T r a v e r s a l  

Node Adjacency List
A F,  B,  C,  G
B A
C A, G
D E,  F
E G, D,  F
F A, E,  D
G A, L, E,  H,  J, C
H G, I
I H
J G, L, K, M
K J
L G, J, M
M L, J

The  adjacency  list  for  the  graph  G
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If  the  bread th  first  travers a l  is  initiated  from  vertex  A, then  the  vertices
of  graph  G  are  visited  in  the  order:  A F B  C  G  E  D  L  H  J M  I  K .  The
bread th  first  spanning  tree  is  shown  in  the  figure  given  below:

A  

B  F C G  

H  E D  L  

M  

J 

K  I  

Br e a d t h  f ir s t  t r av e r s a l  

Exampl e  3:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first
and depth first spanning trees.
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2  3  

4  1  

6  1  

8  2  

2  

3  

3  

4  

8  

8  

8  

5  6  7  

5  

7  

Adj acency list  fo r gr aph G 
 

If  the  depth  first  is  initiated  from  vertex  1,  then  the  vertices  of  graph  G
are  visited  in  the  order:  1,  2,  4,  8,  5,  6,  3,  7.  The  depth  first  spanning  tree
is  as  follows:
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7  

8  

1  

3  

6  5  

2  

4  

De p t h  F ir s t  S p a n n i n g  T r e e  

Breadt h  first  searc h  and  travers a l:

If  the  bread th  first  search  is  initiated  from  vertex  1,  then  the  vertices  of
G are  visited  in  the  order:  1,  2,  3,  4,  5,  6,  7,  8.  The  bread th  first  spanning
tree  is  as  follows:

 

7.7. General  Tree s  (m- ary  tree):

If  in  a  tree,  the  outdegr e e  of  every  node  is  less  than  or  equal  to  m ,  the
tree  is  called  an  m- ary  tree.  If  the  outdeg re e  of  every  node  is  exactly
equal  to  m  or  zero  then  the  tree  is  called  a  full  or  complet e  m- ary  tree.
For  m  =  2,  the  trees  are  called  binary  and  full  binary  trees.  

Differences between trees and binary trees:

TREE BINARY TREE

Each element in a tree can have any number of 
subtrees.

Each element in a binary tree has at most two 
subtrees.

The subtrees in a tree are unordered.
The subtrees of each element in a binary tree 
are ordered (i.e. we distinguish between left and 
right subtrees).

 

7  

8  

1  

3  

6  5  

2  

4  

Br e a d t h  F ir s t  S p a n n i n g  T r e e  
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Convert in g  a  m- ary  tree  (gen e r a l  tree )  to  a  binary  tree:

There  is  a  one- to- one  mapping  between  genera l  ordered  trees  and  binary
trees.  So,  every  tree  can  be  uniquely  repres e n t e d  by  a  binary  tree.
Furthe r m o r e ,  a  fores t  can  also  be  repre se n t e d  by  a  binary  tree.  

Conversion  from  genera l  tree  to  binary  can  be  done  in  two  stages .

 As  a  first  step,  we  delete  all  the  branches  originating  in  every
node  except  the  left  most  branch.  

 We  draw  edges  from  a  node  to  the  node  on  the  right,  if  any,
which  is  situa ted  at  the  same  level.  

 Once  this  is  done  then  for  any  particula r  node,  we  choose  its  left
and  right  sons  in  the  following  manne r :

 The  left  son  is  the  node,  which  is  immedia te ly  below  the
given  node,  and  the  right  son  is  the  node  to  the  immedia t e
right  of  the  given  node  on  the  same  horizontal  line.  Such  a
binary  tree  will  not  have  a  right  subtree .  

Example 1:

Convert (Encoding m-ary trees as binary trees) the following ordered tree into a binary tree. 

6  7  8  9  1 0  1 1  

2  3  4  5  

1  

Solution:

Stage 1 tree using the above mentioned procedure is as follows:

6  7  8  9  1 0  1 1  

2  3  4  5  

1  

Stage  2  tree  using  the  above  mentioned  procedu r e  is  as  follows:
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1  

2  

6  3  

7  8  4  

5  

9  

1 0  

1 1  

Exampl e  2:

Construc t  a  unique  binary  tree  from  the  given  fores t.

4  5  6  

8  9  

1 0  

2  3  

1 1  

7  1  

1 0  

1 2  1 3  

Solution:

Stage 1 tree using the above mentioned procedure is as follows:

4  5  6  

8  9  2  3  

1 1  

7  1  

1 0  

1 2  1 3  

Stage 2 tree using the above mentioned procedure is as follows (binary tree representation of forest):
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4  

5  6  

8  

9  

2  

3  

7  

1  

1 0  

1 2  

1 3  

9  1 1  

Searc h  and  Travers a l  Techn iq u e s  for  m- ary  tree s:

Search involves visiting nodes in a tree in a systematic manner, and may or may not result into a visit
to all nodes. When the search necessarily involved the examination of every vertex in the tree, it is
called the traversal. Traversing of a tree can be done in two ways. 

1. Depth  first  search  or  travers al .

2. Breadth  first  search  or  traversa l .

Depth  first  searc h:

In  Depth  first  search ,  we  begin  with  root  as  a  star t  state ,  then  some
successor  of  the  star t  state ,  then  some  successo r  of  that  state ,  then  some
successor  of  that  and  so  on,  trying  to  reach  a  goal  state .  One  simple  way
to  implemen t  depth  first  search  is  to  use  a  stack  data  struc tu r e
consis ting  of  root  node  as  a  star t  state .
If  depth  first  search  reaches  a  state  S  without  successor s ,  or  if  all  the
successor s  of  a  state  S  have  been  chosen  (visited)  and  a  goal  state  has
not  get  been  found,  then  it  “backs  up”  that  means  it  goes  to  the
immedia t ely  previous  state  or  predec esso r  formally,  the  state  whose
successor  was  ‘S’ originally.  

To  illustra t e  this  let  us  conside r  the  tree  shown  below.  

S 
 

A  

D  

E 

B  

C  

H  
 

F 

I  

J 

G  
 

K  

G O A L  

ST A RT  

Suppose  S  is  the  star t  and  G is  the  only  goal  state .  Depth  first  search  will
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first  visit  S,  then  A, then  D.  But  D has  no  successors ,  so  we  must  back  up  
to  A and  try  its  second  successor ,  E.  But  this  doesn’t  have  any  successors
either ,  so  we  back  up  to  A again.  But  now  we  have  tried  all  the  
successor s  of  A and  haven’t  found  the  goal  state  G so  we  must  back  to  
‘S’.  Now  ‘S’ has  a  second  successor ,  B.  But  B has  no  successors ,  so  we  
back  up  to  S  again  and  choose  its  third  successor ,  C.  C has  one  
successor ,  F.  The  first  successor  of  F  is  H,  and  the  first  of  H  is  J. J doesn’t
have  any  successor s ,  so  we  back  up  to  H  and  try  its  second  successor .  
And  that’s  G,  the  only  goal  state .  

So  the  solution  path  to  the  goal  is  S,  C,  F,  H  and  G  and  the  states
considere d  were  in  order  S,  A, D,  E,  B,  C,  F,  H,  J, G.

Disadvan ta g e s :  

1. It  works  very  fine  when  search  graphs  are  trees  or  lattices,  but
can  get  struck  in  an  infinite  loop  on  graphs .  This  is  becaus e
depth  first  search  can  travel  around  a  cycle  in  the  graph
forever .  

To  eliminate  this  keep  a  list  of  states  previously  visited,  and
never  permit  search  to  return  to  any  of  them.

2. We  cannot  come  up  with  shortes t  solution  to  the  problem.

Breadt h  first  searc h:

Breadth-first  search  starts  at  root  node S and  “discovers"  which vertices  are  reachable  from S.
Breadth-first search discovers vertices in increasing order of distance. Breadth-first search is named
because it visits vertices across the entire breadth. 

To illustrate this let us consider the following tree:

S 
 

A  

D  

E 

B  

C  

H  
 

F 

I  

J 

G  
 

K  

G O A L  

ST A RT  

Breadth  first  search  finds  states  level  by  level.  Here  we  first  check  all  the
immedia t e  successors  of  the  star t  state.  Then  all  the  immedia t e
successor s  of  these ,  then  all  the  immedia t e  successor s  of  these,  and  so
on  until  we  find  a  goal  node.  Suppose  S  is  the  star t  state  and  G  is  the
goal  state .  In  the  figure,  star t  state  S  is  at  level  0;  A, B and  C are  at  level
1;  D,  e  and  F  at  level  2;  H  and  I at  level  3;  and  J, G and  K at  level  4.  
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So  bread th  first  search ,  will  conside r  in  order  S,  A, B,  C,  D,  E,  F,  H,  I,  J
and  G and  then  stop  because  it  has  reached  the  goal  node.  

Breadth  first  search  does  not  have  the  dange r  of  infinite  loops  as  we
consider  states  in  order  of  increasing  number  of  branches  (level)  from
the  star t  state .  

One  simple  way  to  implemen t  bread th  first  search  is  to  use  a  queue  data
structu r e  consisting  of  just  a  star t  state .  

7.8. Sparse Matrices:

A sparse matrix is a two–dimensional array having the value of majority elements as
null. The density of the matrix is the number of non-zero elements divided by the
total number of matrix elements. The matrices with very low density are often good
for use of the sparse format. For example,























0400

0031

0020

5000

A

As far as the storage of a sparse matrix is concerned, storing of null elements is
nothing but wastage of memory. So we should devise technique such that only non-
null elements will be stored.

The matrix A produces:

(3, 1) 1
(2, 2) 2

S = (3, 2) 3
(4, 3) 4
(1, 4) 5

The printed output lists  the non-zero elements of  S, together with  their  row and
column indices. The elements are sorted by columns, reflecting the internal  data
structure.

In large number of applications, sparse matrices are involved. One approach is to
use the linked list. 

The  progra m  to  repre s e n t  spars e  matrix:

/* Check  whethe r  the  given  matrix  is  sparse  matrix  or  not,  if so  then  
print  in  alterna t ive  form  for  storage . */

#  include  <s tdio.h >
#  include  <conio.h >
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main()
{

int  matrix[20][20],  m,  n,  total_eleme n t s ,  total_zeros  =  0,  i,  j;
clrscr();
printf("\n  Enter  Number  of  rows  and  columns:  ");
scanf("%d  %d",&m,  &n);
total_elemen t s  =  m  * n;
printf("\n  Enter  data  for  sparse  matrix:  ");
for(i  =  0;  i <  m  ; i+ +)
{

for(  j =  0;  j <  n  ; j+ +)
{

scanf("%d",  &matrix[i][j]);
if( matrix[i][j]  = =  0)
{

total_zeros + + ;
}

}
}
if(total_zeros  >  total_elemen t s /2  )
{

printf("\n  Given  Matrix  is  Sparse  Matrix..");
      printf("\n  The  Represen t a ion  of  Sparse  Matrix  is:  \n");

printf("\n  Row  \t  Col  \t  Value  ");
for(i  =  0;  i <  m  ; i+ +)
{

for(  j =  0;  j <  n  ; j+ +)
{

if( matrix[i][j]  !=  0)
{

printf("\n  %d  \t  %d  \t  %d",i,j,mat r ix[i][j]);
}

}
}

}
else

printf("\n  Given  Matrix  is  Not  a  Sparse  Matrix..");
}
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