
UNIT-I

PROGRAMMING PERFORMANCE

Perfor m a n c e of a pro gr a m : The perfor mance of a program is
measured based on the amount of comput er memory and time needed
to run a program.

The two approache s which are used to measur e the performa nc e of the
progra m are:

1. Analy t i c a l me t h o d à called the Performance Analysis.
2. Exper i m e n t a l me t h o d à called the Performanc e Measure m e n t .

SPACE COMPLEXITY

Spac e co m p l e x i t y : The Space complexi ty of a program is defined as
the amount of mem ory it needs to run to completion.

As said above the space complexity is one of the factor which
account s for the performa nc e of the progra m. The space complexity can
be measur e d using experime n t a l method, which is done by running the
progra m and then measur ing the actual space occupied by the progra m
during execution. But this is done very rarely. We estimate the space
complexity of the program before running the progra m.

Spac e compl ex i ty is the sum of the followin g comp o n e n t s :

(i) Ins t r u c t i o n spac e:

 The progra m which is written by the user is the source progra m.
When this progra m is compiled, a compiled version of the progra m is
genera t e d . For executing the progra m an executa ble version of the
progra m is genera t e d . The space occupied by these three when the
progra m is under execution, will account for the instruc t ion space.

(ii) Data spac e:

The space needed by the constan t s , simple variables , arrays ,
structu r e s and other data struc tu r e s will account for the data space.

The Data space depends on the following factors:

 Structure size – It is the sum of the size of compone n t
variables of the structu r e .

 Array size – Total size of the array is the product of the size
of the data type and the numbe r of array locations.

2

(iii) Enviro n m e n t stac k spac e:

The Environm en t stack space is used for saving information needed
to resume execution of partially complet ed functions. That is wheneve r
the control of the program is transfe r r e d from one function to anothe r
during a function call, then the values of the local variable of that
function and retu rn address are stored in the environme n t stack. This
information is retrieved when the control comes back to the same
function.

The environm e n t stack space depends on the following factors:

 Return address
 Values of all local variables and formal param e t e r s .

The Total space occupied by the progra m during the execution of the
progra m is the sum of the fixed space and the variable space.

(i) Fixed spac e - The space occupied by the instruc tion space,
simple variables and constan t s .

(ii) Variable spac e – The dynamically allocated space to the
various data structu r e s and the environme n t stack space varies
according to the input from the user.

Spac e co m p l e x i t y S(P) = c + S p

c à Fixed space or constan t space
S p à Variable space

We will be interes t e d in estimating only the variable space because that
is the one which varies according to the user input.

TIME COMPLEXITY

Tim e co m p l e x i t y : Time complexi ty of the program is defined as the
amount of comput er time it needs to run to comple tion.

The time complexity can be measu re d , by measuring the time
taken by the progra m when it is executed . This is an experimen t a l
method. But this is done very rarely. We always try to estimate the time
consum e d by the progra m even before it is run for the first time.

The time complexi ty of the program depends on the following
factors:

 Compiler used – some compilers produce optimized code
which consum es less time to get executed .

 Compiler options – The optimization options can be set in the
options of the compiler .

 Target comput er – The speed of the compute r or the number
of instruc t ions executed per second differs from one
compute r to anothe r .

3

The total time taken for the execution of the progra m is the sum of the
compilation time and the execution time.

(i) Compi l e time – The time taken for the compilation of the
progra m to produce the interme dia t e object code or the
compiler version of the progra m. The compilation time is taken
only once as it is enough if the progra m is compiled once. If
optimized code is to be genera t e d , then the compila tion time
will be higher .

(ii) Run time or Execut i o n time - The time taken for the
execution of the progra m. The optimized code will take less
time to get executed .

Tim e co m p l e x i t y T(P) = c + T p

c à Compile time
Tp à Run time or execution time

We will be interes t e d in estimating only the execution time as this is the
one which varies according to the user input.

Estima t i n g the Execut i o n time:

Progr a m st e p: Program step is a meaningful segme n t of a program
which is independ e n t of instance characteris tics. Instance
characteris tics are the variables whose values are decided by the user
input at that instant of time.

Steps in estimating the execution time of program:

(i) Identify one or more key opera tions and dete rmine the number of
times these are perform ed . That is find out how many key
opera t ions are presen t inside a loop and how many times that loop
is executed .

(ii) Determine the total number of steps executed by the progra m.

The time complexity will be propor tional to the sum of the above two.

ASYMPTOTIC NOTATIONS

Asymptotic nota tions – Asymptotic nota tions are the nota tions used to
describe the behavior of the time or space complexity.

Let us repre se n t the time complexity and the space complexity using the
common function f(n).

The various asympto tic nota tions are:

(i) O (Big Oh notation)

4

(ii) (Omega notation)Ω
(iii) (Theta notation)θ
(iv) o (Little Oh notation)

O – Big Oh notation

The big Oh nota tion provides an upper bound for the function f(n).

The function f(n) = O(g(n)) if and only if there exists positive constan t s
c and n 0 such that f(n) cg(n) for all n n≤ ≥ 0 .

Examples:

1. f(n) = 3n + 2

Let us take g(n) = n
 c = 4
 n 0 = 2

Let us check the above condition

3n + 1 4n ≤ for all n 2≥

The condition is satisfied. Hence f(n) = O(n).

2. f(n) = 10n 2 + 4n + 2

Let us take g(n) = n 2

c = 11
n 0 = 6

Let us check the above condition

10n 2 + 4n + 2 11n ≤ for all n 6≥

The condition is satisfied. Hence f(n) = O(n 2).

 - Omega nota tionΩ

The notation gives the lower bound for the function f(n).Ω

The function f(n) = (g(n)) if and only if there exists positive constan t sΩ
c and n 0 such that f(n) cg(n) for all n n≥ ≥ 0 .

Examples:

1. f(n) = 3n + 2

Let us take g(n) = n
 c = 3
 n 0 = 0

5

Let us check the above condition

3n + 1 3n ≥ for all n 0≥

The condition is satisfied. Hence f(n) = (n).Ω

2. f(n) = 10n 2 + 4n + 2

Let us take g(n) = n 2

c = 10
n 0 = 0

Let us check the above condition

10n 2 + 4n + 2 10n ≥ for all n 0≥

The condition is satisfied. Hence f(n) = (nΩ 2).

 – Theta notat io nθ

The theta nota tion is used when the function f(n) can be bounded by both
from above and below the same function g(n).

f(n) = (g(n)) if and only if there exists some positive constan t s cθ 1 and c 2

and n 0, such that c 1g(n) f(n) c≤ ≤ 2g(n) for all n n≥ 0.

We have seen in the previous two cases,

3n + 2 = O(n) and 3n + 2 = (n)Ω

Hence we can write 3n + 2 = (n)θ

o - Little Oh notat io n

f(n) = o(g(n)) if and only if f(n) = O(g(n)) and f(n) (g(n))≠ Ω

For example,

3n + 2 = O(n 2) but 3n + 2 (n≠ Ω 2)

Therefore it can be written as 3n + 2 = o(n 2)

6

SEARCHING AND SORTING

Searching is used to find the location where an element is available. There are two types of search
techniques. They are:

1. Linear or sequential search

2. Binary search

Sorting allows an efficient arrangement of elements within a given data structure. It is a way in which
the elements are organized systematically for some purpose. For example, a dictionary in which
words are arranged in alphabetical order and telephone director in which the subscriber names are
listed in alphabetical order. There are many sorting techniques out of which we study the following.

1. Bubble sort

2. Quick sort

3. Selection sort and

4. Heap sort

LINEAR SEARCH

This is the simplest of all searching techniques. In this technique, an ordered or unordered list will be
searched one by one from the beginning until the desired element is found. If the desired element is
found in the list then the search is successful otherwise unsuccessful.

Suppose there are ‘n’ elements organized sequentially on a List. The number of comparisons
required to retrieve an element from the list, purely depends on where the element is stored in the list.
If it is the first element, one comparison will do; if it is second element two comparisons are necessary
and so on. On an average you need [(n+1)/2] comparison’s to search an element. If search is not
successful, you would need ’n’ comparisons.

The time complexity of linear search is O(n).

Algorithm:

Let array a[n] stores n elements. Determine whether element ‘x’ is present or not.

linsrch(a[n], x)
{

index = 0;
flag = 0;
while (index < n) do
{

if (x == a[index])
{

flag = 1;
break;

}
index ++;

}
if(flag == 1)

printf(“Data found at %d position“, index);
else

printf(“data not found”);

}

7

Example 1:

Suppose we have the following unsorted list: 45, 39, 8, 54, 77, 38, 24, 16, 4, 7, 9, 20

If we are searching for: 45, we’ll look at 1 element before success
39, we’ll look at 2 elements before success
8, we’ll look at 3 elements before success
54, we’ll look at 4 elements before success
77, we’ll look at 5 elements before success
38 we’ll look at 6 elements before success
24, we’ll look at 7 elements before success
16, we’ll look at 8 elements before success
4, we’ll look at 9 elements before success
7, we’ll look at 10 elements before success
9, we’ll look at 11 elements before success
20, we’ll look at 12 elements before success

For any element not in the list, we’ll look at 12 elements before failure

Example 2:

Let us illustrate linear search on the following 9 elements:

Index 0 1 2 3 4 5 6 7 8
Elements -15 -6 0 7 9 23 54 82 101

Searching different elements is as follows:

1. Searching for x = 7 Search successful, data found at 3rd position

2. Searching for x = 82 Search successful, data found at 7th position

3. Searching for x = 42 Search un-successful, data not found

A non-recursive program for Linear Search:

include <stdio.h>
include <conio.h>

main()
{

int number[25], n, data, i, flag = 0;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements: ");
for(i = 0; i < n; i++)

scanf("%d", &number[i]);
printf("\n Enter the element to be Searched: ");
scanf("%d", &data);
for(i = 0; i < n; i++)
{

if(number[i] == data)
{

flag = 1;
break;

}
}
if(flag == 1)

printf("\n Data found at location: %d", i+1);
else

printf("\n Data not found ");

8

}

A Recursive program for linear search:

include <stdio.h>
include <conio.h>

void linear_search(int a[], int data, int position, int n)
{

int mid;
if(position < n)
{

if(a[position] == data)
printf("\n Data Found at %d ", position);

else
linear_search(a, data, position + 1, n);

}
else

printf("\n Data not found");
}

void main()
{

int a[25], i, n, data;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements: ");
for(i = 0; i < n; i++)
{

scanf("%d", &a[i]);
}
printf("\n Enter the element to be seached: ");
scanf("%d", &data);
linear_search(a, data, 0, n);
getch();

}

BINARY SEARCH

If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < xn . When we are given a
element ‘x’, binary search is used to find the corresponding element from the list. In case ‘x’ is
present, we have to determine a value ‘j’ such that a[j] = x (successful search). If ‘x’ is not in the list
then j is to set to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and compare ‘x’ with
a[mid]. If x = a[mid] then the desired record has been found. If x < a[mid] then ‘x’ must be in
that portion of the file that precedes a[mid]. Similarly, if a[mid] > x, then further search is only
necessary in that part of the file which follows a[mid]. If we use recursive procedure of finding the
middle key a[mid] of the un-searched portion of a file, then every un-successful comparison of ‘x’ with
a[mid] will eliminate roughly half the un-searched portion from consideration.

Since the array size is roughly halved after each comparison between ‘x’ and a[mid], and since an
array of length ‘n’ can be halved only about log2n times before reaching a trivial length, the worst case
complexity of Binary search is about log2n

Algorithm:

9

Let array a[n] of elements in increasing order, n 0, determine whether ‘x’ is present, and if so, set j
such that x = a[j] else return 0.

binsrch(a[], n, x)
{

low = 1; high = n;
while (low < high) do
{

mid = (low + high)/2
if (x < a[mid])

high = mid – 1;
else if (x > a[mid])

low = mid + 1;
else return mid;

}
return 0;

 }

low and high are integer variables such that each time through the loop either ‘x’ is found or low is
increased by at least one or high is decreased by at least one. Thus we have two sequences of
integers approaching each other and eventually low will become greater than high causing
termination in a finite number of steps if ‘x’ is not present.

Example 1:

Let us illustrate binary search on the following 12 elements:

Index 1 2 3 4 5 6 7 8 9 10 11 12
Elements 4 7 8 9 16 20 24 38 39 45 54 77

If we are searching for x = 4: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4, found

If we are searching for x = 7: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 1, high = 2, mid = 3/2 = 1, check 4
low = 2, high = 2, mid = 4/2 = 2, check 7, found

If we are searching for x = 8: (This needs 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8, found

If we are searching for x = 9: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9, found

If we are searching for x = 16: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 1, high = 5, mid = 6/2 = 3, check 8
low = 4, high = 5, mid = 9/2 = 4, check 9
low = 5, high = 5, mid = 10/2 = 5, check 16, found

If we are searching for x = 20: (This needs 1 comparison)
low = 1, high = 12, mid = 13/2 = 6, check 20, found

If we are searching for x = 24: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 10, mid = 17/2 = 8, check 38

10

low = 7, high = 7, mid = 14/2 = 7, check 24, found

If we are searching for x = 38: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 7, high = 10, mid = 17/2 = 8, check 38, found

If we are searching for x = 39: (This needs 2 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39, found

If we are searching for x = 45: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 10, high = 10, mid = 20/2 = 10, check 45, found

If we are searching for x = 54: (This needs 3 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54, found

If we are searching for x = 77: (This needs 4 comparisons)
low = 1, high = 12, mid = 13/2 = 6, check 20
low = 7, high = 12, mid = 19/2 = 9, check 39
low = 10, high = 12, mid = 22/2 = 11, check 54
low = 12, high = 12, mid = 24/2 = 12, check 77, found
The number of comparisons necessary by search element:

20 – requires 1 comparison; 8 and 39 – requires 2 comparisons;
4, 9, 38, 54 – requires 3 comparisons; and 7, 16, 24, 45, 77 – requires 4 comparisons

Summing the comparisons, needed to find all twelve items and dividing by 12, yielding 37/12 or
approximately 3.08 comparisons per successful search on the average.

Example 2:

Let us illustrate binary search on the following 9 elements:

Index 1 2 3 4 5 6 7 8 9
Elements -15 -6 0 7 9 23 54 82 101

The number of comparisons required for searching different elements is as follows:
1. If we are searching for x = 101: (Number of comparisons = 4)

low high mid
 1 9 5

6 9 7
 8 9 8
 9 9 9

 found

2. Searching for x = 82: (Number of comparisons = 3)

low high mid
 1 9 5
 6 9 7
 8 9 8

 found

3. Searching for x = 42: (Number of comparisons = 4)

11

 low high mid
 1 9 5
 6 9 7
 5 6 5
 6 6 6
 7 6 not found

4. Searching for x = -14: (Number of comparisons = 3)

low high mid
 1 9 5
 4 4 2
 1 1 1
 2 1 not found

Continuing in this manner the number of element comparisons needed to find each of nine elements
is:

Index 1 2 3 4 5 6 7 8 9
Elements -15 -6 0 7 9 23 54 82 101
Comparisons 3 2 3 4 1 3 2 3 4

No element requires more than 4 comparisons to be found. Summing the comparisons needed to find
all nine items and dividing by 9, yielding 25/9 or approximately 2.77 comparisons per successful
search on the average.

There are ten possible ways that an un-successful search may terminate depending upon the value of
x.

If x < a(1), a(1) < x < a(2), a(2) < x < a(3), a(5) < x < a(6), a(6) < x < a(7) or a(7) < x < a(8) the
algorithm requires 3 element comparisons to determine that ‘x’ is not present. For all of the remaining
possibilities BINSRCH requires 4 element comparisons. Thus the average number of element
comparisons for an unsuccessful search is:

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4

Time Complexity:

The time complexity of binary search in a successful search is O(log n) and for an unsuccessful
search is O(log n).
A non-recursive program for binary search:

include <stdio.h>
include <conio.h>

main()
{

int number[25], n, data, i, flag = 0, low, high, mid;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");
for(i = 0; i < n; i++)

scanf("%d", &number[i]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data);
low = 0; high = n-1;
while(low <= high)
{

mid = (low + high)/2;
if(number[mid] == data)

12

{
flag = 1;
break;

}
else
{

if(data < number[mid])
high = mid - 1;

else
low = mid + 1;

}
}
if(flag == 1)

printf("\n Data found at location: %d", mid + 1);
else

printf("\n Data Not Found ");
}

A recursive program for binary search:

include <stdio.h>
include <conio.h>

void bin_search(int a[], int data, int low, int high)
{

int mid ;
if(low <= high)
{

mid = (low + high)/2;
if(a[mid] == data)

printf("\n Element found at location: %d ", mid + 1);
else
{

if(data < a[mid])
bin_search(a, data, low, mid-1);

else
bin_search(a, data, mid+1, high);

}
}
else

printf("\n Element not found");
}

void main()
{

int a[25], i, n, data;
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d", &n);
printf("\n Enter the elements in ascending order: ");
for(i = 0; i < n; i++)

scanf("%d", &a[i]);
printf("\n Enter the element to be searched: ");
scanf("%d", &data);
bin_search(a, data, 0, n-1);
getch();

}

Bubble Sort:

The bubble sort is easy to understand and program. The basic idea of bubble sort is to pass through
the file sequentially several times. In each pass, we compare each element in the file with its

13

successor i.e., X[i] with X[i+1] and interchange two element when they are not in proper order. We will
illustrate this sorting technique by taking a specific example. Bubble sort is also called as exchange
sort.

Consider the array x[n] which is stored in memory as shown below:

X[0] X[1] X[2] X[3] X[4] X[5]

33 44 22 11 66 55

Suppose we want our array to be stored in ascending order. Then we pass through the array 5 times
as described below:

Pass 1: (first element is compared with all other elements)

We compare X[i] and X[i+1] for i = 0, 1, 2, 3, and 4, and interchange X[i] and X[i+1] if X[i] > X[i+1]. The
process is shown below:

X[0] X[1] X[2] X[3] X[4] X[5] Remarks

33 44 22 11 66 55

22 44

11 44

44 66

55 66

33 22 11 44 55 66

The biggest number 66 is moved to (bubbled up) the right most position in the array.

Pass 2: (second element is compared)

We repeat the same process, but this time we don’t include X[5] into our comparisons. i.e., we
compare X[i] with X[i+1] for i=0, 1, 2, and 3 and interchange X[i] and X[i+1] if X[i] > X[i+1]. The
process is shown below:

X[0] X[1] X[2] X[3] X[4] Remarks

33 22 11 44 55

22 33

11 33

33 44

44 55

22 11 33 44 55

The second biggest number 55 is moved now to X[4].

Pass 3: (third element is compared)

We repeat the same process, but this time we leave both X[4] and X[5]. By doing this, we move the
third biggest number 44 to X[3].

X[0] X[1] X[2] X[3] Remarks

22 11 33 44

11 22

14

22 33

33 44

11 22 33 44

Pass 4: (fourth element is compared)

We repeat the process leaving X[3], X[4], and X[5]. By doing this, we move the fourth biggest number
33 to X[2].

X[0] X[1] X[2] Remarks

11 22 33

11 22

22 33

Pass 5: (fifth element is compared)

We repeat the process leaving X[2], X[3], X[4], and X[5]. By doing this, we move the fifth biggest
number 22 to X[1]. At this time, we will have the smallest number 11 in X[0]. Thus, we see that we
can sort the array of size 6 in 5 passes.

For an array of size n, we required (n-1) passes.

Program for Bubble Sort:

#include <stdio.h>
#include <conio.h>

void bubblesort(int x[],int n)
{

int i, j, t;
for (i = 0; i < n; i++)
{

for (j = 0; j <n-i; j++)
{

if (x[j] > x[j+1])
{

t = x[j];
x[j] = x[j+1];
x[j+1] = t;

}
}

}
}

main()
{

int i, n, x[25];
clrscr();
printf("\n Enter the number of elements: ");
scanf("%d",&n);
printf("\n Enter Data:");
for(i = 0; i < n ; i++)

scanf("%d", &x[i]);
bubblesort(x,n);
printf ("\nArray Elements after sorting: ");
for (i = 0; i < n; i++)

15

printf ("%5d", x[i]);
}

Time Complexity:

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1) comparisons on
each pass. Thus the total number of comparisons is (n-1) * (n-1) = n2 – 2n + 1, which is O(n2).
Therefore bubble sort is very inefficient when there are more elements to sorting.

Selection Sort:

Now, you will learn another sorting technique, which is more efficient than bubble sort and the
insertion sort. This sort, as you will see, will not require no more than n-1 interchanges. The sort we
are talking about is selection sort.

Suppose x is an array of size n stored in memory. The selection sort algorithm first selects the
smallest element in the array x and place it at array position 0; then it selects the next smallest
element in the array x and place it at array position 1. It simply continues this procedure until it places
the biggest element in the last position of the array. We will now present to you an algorithm for
selection sort.

The array is passed through (n-1) times and the smallest element is placed in its respective position
in the array as detailed below:

Pass 1:
Find the location j of the smallest element in the array x [0], x[1], x[n-1], and then interchange x[j]
with x[0]. Then x[0] is sorted.

Pass 2:
Leave the first element and find the location j of the smallest element in the sub-array x[1], x[2],
x[n-1], and then interchange x[1] with x[j]. Then x[0], x[1] are sorted.

Pass 3:
Leave the first two elements and find the location j of the smallest element in the sub-array x[2], x[3], .
. . . x[n-1], and then interchange x[2] with x[j]. Then x[0], x[1], x[2] are sorted.

Pass (n-1):
Find the location j of the smaller of the elements x[n-2] and x[n-1], and then interchange x[j] and x[n-
2]. Then x[0], x[1], x[n-2] are sorted. Of course, during this pass x[n-1] will be the biggest
element and so the entire array is sorted.

Time Complexity:

In general we prefer selection sort in case where the insertion sort or the bubble sort requires
exclusive swapping. In spite of superiority of the selection sort over bubble sort and the insertion sort
(there is significant decrease in run time), its efficiency is also O(n2) for n data items.

Example:

Let us consider the following example with 9 elements to analyze selection Sort:

1 2 3 4 5 6 7 8 9 Remarks

65 70 75 80 50 60 55 85 45 find the first smallest element

i j swap a[i] & a[j]

45 70 75 80 50 60 55 85 65 find the second smallest element

i j swap a[i] and a[j]

45 50 75 80 70 60 55 85 65 Find the third smallest element

i j swap a[i] and a[j]

16

45 50 55 80 70 60 75 85 65 Find the fourth smallest element

i j swap a[i] and a[j]

45 50 55 60 70 80 75 85 65 Find the fifth smallest element

i j swap a[i] and a[j]

45 50 55 60 65 80 75 85 70 Find the sixth smallest element

i j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the seventh smallest element

i j swap a[i] and a[j]

45 50 55 60 65 70 75 85 80 Find the eighth smallest element

i J swap a[i] and a[j]

45 50 55 60 65 70 75 80 85 The outer loop ends.

Non-recursive Program for selection sort:

include<stdio.h>
include<conio.h>

void selectionSort(int low, int high);

int a[25];

int main()
{

int num, i= 0;
clrscr();
printf("Enter the number of elements: ");
scanf("%d", &num);
printf("\nEnter the elements:\n");
for(i=0; i < num; i++)

scanf("%d", &a[i]);
selectionSort(0, num - 1);
printf("\nThe elements after sorting are: ");
for(i=0; i< num; i++)

printf("%d ", a[i]);
return 0;

}

void selectionSort(int low, int high)
{

int i=0, j=0, temp=0, minindex;
for(i=low; i <= high; i++)
{

minindex = i;
for(j=i+1; j <= high; j++)

if(a[j] < a[minindex])
minindex = j;

temp = a[i];
a[i] = a[minindex];
a[minindex] = temp;

}
}

Recursive Program for selection sort:

#include <stdio.h>

17

#include<conio.h>

int x[6] = {77, 33, 44, 11, 66};

selectionSort(int);

main()
{

int i, n = 0;
clrscr();
printf (" Array Elements before sorting: ");
for (i=0; i<5; i++)

printf ("%d ", x[i]);
selectionSort(n); /* call selection sort */
printf ("\n Array Elements after sorting: ");
for (i=0; i<5; i++)

printf ("%d ", x[i]);
}

selectionSort(int n)
{

int k, p, temp, min;
if (n== 4)

return (-1);
min = x[n];
p = n;
for (k = n+1; k<5; k++)
{

if (x[k] <min)
{

min = x[k];
p = k;

}
}
temp = x[n]; /* interchange x[n] and x[p] */
x[n] = x[p];
x[p] = temp;
n++ ;
selectionSort(n);

}

INSERTION SORT

The main idea behind the inser tion sort is to inser t the i th element
in its correc t place in the i th pass. Suppose an array A with n element s
A[1], A[2],…A[N] is in memory. The inser tion sort algorithm scans A
from A[1] to A[N], inser t ing each element A[K] into its prope r position in
the previously sorted subar r ay A[1], A[2],..A[K-1].

Princ i p l e : In Insertion Sort algorithm, each elemen t A[K] in the list is
compared with all the elem en t s before it (A[1] to A[K-1]). If any
elem en t A[I] is found to be greater than A[K] then A[K] is inserted in
the place of A[I}. This process is repeated till all the elemen t s are
sorted.

Algor i t h m :

18

Proce d u r e INSERTION SORT(A, N)

// A is the array containing the list of data items
// N is the number of data items in the list

Last ß N – 1

Repea t For Pass = 1 to Last Step 1
Repea t For I = 0 to Pass – 1 Step 1

If A[Pass] < A[I]
Then

Temp ß A[Pass]
Repea t For J = Pass -1 to I Step -1

A[J +1] ß A[J]
End Repea t
A[I] ß Temp

End If
End Repea t

End Repea t

End INSERTIONSORT

In Inser t ion Sort algorithm, Last is made to point to the last
element in the list and Pass is made to point to the second element in the
list. In every pass the Pass is increm e n t e d to point to the next element
and is continued till it reaches the last element . During each pass
A[Pass] is compare d all elemen t s before it. If A[Pass] is lesse r than A[I]
in the list, then A[Pass] is inser ted in position I. Finally, a sorted list is
obtained.

For performing the inser tion opera t ion, a variable temp is used to
safely store A[Pass] in it and then shift right element s star ting from A[I]
to A[Pass- 1].

Exam p l e :

N = 10 à Number of elemen t s in the list
L à Last
P à Pass

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

P=1 A[P] < A[0] à Insert A[P] at 0 L=9

23 42 74 11 65 58 94 36 99 87

P=2 L=9
A[P] is greater than all elemen t s before it. Hence No Change

19

23 42 74 11 65 58 94 36 99 87

P=3 A[P] < A[0] à Insert A[P] at 0 L=9

11 23 42 74 65 58 94 36 99 87

P=4 L=9
A[P] < A[3] à Insert A[P] at 3

11 23 42 65 74 58 94 36 99 87

P=5 L=9
A[P] < A[3] à Insert A[P] at 3

11 23 42 58 65 74 94 36 99 87

P=6 L=9
A[P] is greater than all elemen t s before it. Hence No Change

11 23 42 58 65 74 94 36 99 87

P=7 L=9
A[P] < A[2] à Insert A[P] at 2

11 23 36 42 58 65 74 94 99 87

P=8 L=9
A[P] is greater than all elemen t s before it. Hence No Change

11 23 36 42 58 65 74 94 99 87

P, L=9
A[P] < A[7] à Insert A[P] at 7

Sorted List:

11 23 36 42 58 65 74 87 94 99

Progr a m :

void array::sor t()
{

int temp, last= coun t- 1;
for (int pass = 1 ; pass < = l a s t ;p a s s + +)
{

for (int i=0; i<pass; i+ +)
{

20

if (a[pass] < a [i])
{

temp = a[p a s s] ;
for (int j=pass- 1;j> =i ;j- -)

a[j+1] = a [j];
a[i]= t e m p;

}
}

}
}

In the sort function, the integer variable last is used to point to the
last element in the list. The first pass star ts with the variable pass
pointing to the second elemen t and continues till pass reaches the last
element . In each pass, a[pass] is compared with all the element s before
it and if a[pass] is lesser than a[i], then it is inser t ed in position i. Before
inser t ing it, the element s a[i] to a[pass- 1] are shifted right using a
tempora ry variable.

Advan t a g e s :
1. Sorts the list faster when the list has less number of element s .
2. Efficient in cases where a new elemen t has to be inser ted into a

sorted list.

Disad v a n t a g e s :
1. Very slow for large values of n.
2. Poor performa nc e if the list is in almost reverse order .

21

Quick Sort

The quick sort was invented by Prof. C. A. R. Hoare in the early 1960’s. It was one of the first more
efficient sorting algorithms. It is an example of a class of algorithms that work by what is usually called
“divide and conquer”.

In essence, the quick sort algorithm partitions the original array by rearranging it into two groups. The
first group contains those elements less than some arbitrary chosen value taken from the set, and the
second group contains those elements greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has been rearranged in this way with
respect to the pivot, the very same partitioning is recursively applied to each of the two subsets.
When all the subsets have been partitioned and rearranged, the original array is sorted.
The function partition() makes use of two pointers up and down which are moved toward each other
in the following fashion:

1. Repeatedly increase the pointer up by one position until a[up] > =pivot.

2. Repeatedly decrease the pointer down by one position until a[down] <=pivot.

3. If down > up, interchange a[down] with a[up]

4. Repeat the steps 1, 2 and 3 till the ‘up’ pointer crosses the ‘down’ pointer. If ‘up’ pointer
crosses ‘down’ pointer, the position for pivot is found and place pivot element in ‘down’
pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sort function sorts all
elements in an array ‘a’ between positions ‘low’ and ‘high’.

1. It terminates when the condition low >= high is satisfied. This condition will be satisfied
only when the array is completely sorted.

2. Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it calls the
partition function to find the proper position j of the element x[low] i.e. pivot. Then we will
have two sub-arrays x[low], x[low+1], x[j-1] and x[j+1], x[j+2], . . .x[high].

3. It calls itself recursively to sort the left sub-array x[low], x[low+1], x[j-1] between
positions low and j-1 (where j is returned by the partition function).

4. It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . .x[high] between
positions j+1 and high.

Algorithm

Sorts the elements a[p], ,a[q] which reside in the global array a[n] into ascending order. The a[n
+ 1] is considered to be defined and must be greater than all elements in a[n]; a[n + 1] = +

quicksort (p, q)
{

if (p < q) then
{

call j = PARTITION(a, p, q+1); // j is the position of the partitioning element
call quicksort(p, j – 1);
call quicksort(j + 1 , q);

}
}

partition(a, m, p)
{

v = a[m]; up = m; down = p; // a[m] is the partition element
do
{

22

repeat
up = up + 1;

until (a[up] > v);

repeat
down = down – 1;

until (a[down] < v);
if (up < down) then call interchange(a, up, down);

 } while (up > down);

a[m] = a[down];
a[down] = v;
return (down);

}

interchange(a, up, down)
{

p = a[up];
a[up] = a[down];
a[down] = p;

}

Time complexity:

There are several choices for choosing the ‘pivot’ element through which we can improve the
efficiency of quick sort. For example, one may choose the ‘pivot’ element as median or mean or
middle element. Also, a non-recursive method could be developed for execution efficiency. When
these improvements are made, experiments indicate the fact that the total number of comparisons for
quick sort is of O(n log n).

Example:

Select first element as the pivot element. Move ‘up’ pointer from left to right in search of an element
larger than pivot. Move the ‘down’ pointer from right to left in search of an element smaller than pivot.
If such elements are found, the elements are swapped. This process continues till the ‘up’ pointer
crosses the ‘down’ pointer. If ‘up’ pointer crosses ‘down’ pointer, the position for pivot is found and
interchange pivot and element at ‘down’ position.

Let us consider the following example with 13 elements to analyze quick sort:

1 2 3 4 5 6 7 8 9 10 11 12 13 Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot up dow
n

swap up
& down

04 79

up dow
n

swap up
& down

02 57
dow

n up

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)
swap

pivot &
down

pivot dow
n

swap
pivot &
down

(02 08 16 06 04) 24
pivot,
down

up swap
pivot &

23

down

02 (08 16 06 04)

pivot up dow
n

swap up
& down

04 16
dow

n Up

(06 04) 08
(16)

swap
pivot &
down

pivot
,

dow
n

up

(04) 06
swap

pivot &
down

04
pivot

,
dow

n
16

pivot
,

dow
n

(02 04 06 08 16 24) 38

(56 57 58 79 70 45)

pivot up dow
n

swap up
& down

45 57
dow

n up

(45) 56 (58 79 70 57)
swap

pivot &
down

45
pivot

,
dow

n

swap
pivot &
down

(58
pivot

79
up 70

57)
dow

n

swap up
& down

57 79
dow

n up

(57) 58 (70 79)
swap

pivot &
down

57
pivot

,
dow

n
(70 79)

pivot
,

dow
n

up
swap

pivot &
down

70
79

pivot
,

dow

24

n

(45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

Program for Quick Sort (Recursive version):

include<stdio.h>
include<conio.h>

void quicksort(int, int);
int partition(int, int);
void interchange(int, int);

int array[25];

int main()
{

int num, i = 0;
clrscr();
printf("Enter the number of elements: ");
scanf("%d", &num);
printf("Enter the elements: ");
for(i=0; i < num; i++)

scanf("%d", &array[i]);
quicksort(0, num -1);
printf("\nThe elements after sorting are: ");
for(i=0; i < num; i++)

printf("%d ", array[i]);
return 0;

}
void quicksort(int low, int high)
{

int pivotpos;
if(low < high)
{

pivotpos = partition(low, high + 1);
quicksort(low, pivotpos - 1);
quicksort(pivotpos + 1, high);

}
}

int partition(int low, int high)
{

int pivot = array[low];
int up = low, down = high;

do
{

do
up = up + 1;

while(array[up] < pivot);

do
down = down - 1;

while(array[down] > pivot);

if(up < down)
interchange(up, down);

}while(up < down);

25

array[low] = array[down];
array[down] = pivot;
return down;

}

void interchange(int i, int j)
{

int temp;
temp = array[i];
array[i] = array[j];
array[j] = temp;

}

Heap and Heap Sort

Heap is a data structure, which permits one to insert elements into a set and also to find the largest
element efficiently. A data structure, which provides these two operations, is called a priority queue.

Max and Min Heap data structures:

A max heap is an almost complete binary tree such that the value of each node is greater than or
equal to those in its children.

M a x h e a p M i n h e a p

9 5

8 5

7 5 2 5

4 5

1 5 3 5

4 5

5 5

1 5

6 5 3 5

2 5

7 5

5 5 6 5 8 5 9 5

A min heap is an almost complete binary tree such that the value of each node is less than or equal to
those in its children.

Representation of Heap Tree:

Since heap is a complete binary tree, a heap tree can be efficiently represented using one
dimensional array. This provides a very convenient way of figuring out where children belong to.

 The root of the tree is in location 1.

 The left child of an element stored at location i can be found in location 2*i.

 The right child of an element stored at location i can be found in location 2*i+1.

 The parent of an element stored at location i can be found at location floor(i/2).

The elements of the array can be thought of as lying in a tree structure. A heap tree represented
using a single array looks as follows:

X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8]
65 45 60 40 25 50 55 30

26

2 5 5 5

6 0

5 0

6 5

4 5

3 0

4 0

x [1]

x [3]

x [7] x [6]

x [2]

x [5] x [4]

x [8] He a p T r e e

Operations on heap tree:

The major operations required to be performed on a heap tree:

1. Insertion,

2. Deletion and

3. Merging.

Insertion into a heap tree:

This operation is used to insert a node into an existing heap tree satisfying the properties of heap
tree. Using repeated insertions of data, starting from an empty heap tree, one can build up a heap
tree.

Let us consider the heap (max) tree. The principle of insertion is that, first we have to adjoin the data
in the complete binary tree. Next, we have to compare it with the data in its parent; if the value is
greater than that at parent then interchange the values. This will continue between two nodes on path
from the newly inserted node to the root node till we get a parent whose value is greater than its child
or we reached the root.

For illustration, 35 is added as the right child of 80. Its value is compared with its parent’s value, and
to be a max heap, parent’s value greater than child’s value is satisfied, hence interchange as well as
further comparisons are no more required.

As another illustration, let us consider the case of insertion 90 into the resultant heap tree. First, 90
will be added as left child of 40, when 90 is compared with 40 it requires interchange. Next, 90 is
compared with 80, another interchange takes place. Now, our process stops here, as 90 is now in
root node. The path on which these comparisons and interchanges have taken places are shown by
dashed line.

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows:

Max_heap_insert (a, n)
{

//inserts the value in a[n] into the heap which is stored at a[1] to a[n-1]

integer i, n;
i = n;
item = a[n] ;
while ((i > 1) and (a[i/2] < item) do
{

a[i] = a[i/2] ; // move the parent down
i = i/2 ;

}
a[i] = item ;
return true ;

}

Example:

Form a heap by using the above algorithm for the given data 40, 80, 35, 90, 45, 50, 70.

27

40

40

80

80

40

1. Insert 40:

2. Insert 80:

80

40

28

9 0

8 0

4 0 5 0

9 0

3 5

9 0

9 0

8 0

4 5

4 0 3 5

5 0 8 0

3 5

4 0

8 0

4 . I n s e r t 9 0 :

3 . I n s e r t 3 5 :

5 . I n s e r t 4 5 :

6 . I n s e r t 5 0 :

4 5 4 0 4 5

9 0

7 . I n s e r t 7 0 :

9 0

4 5 3 5

7 0

4 5 3 5

3 5

8 0

4 0 4 0

8 0

5 0 7 0

5 0

5 0

3 5

7 0

5 0

8 0

4 0 3 5

4 0

9 0

8 0 3 5

4 0

9 0

9 0

8 0

adjust (a, i, n)
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to form a single
heap, 1 < i < n. No node has an address greater than n or less than 1. //
{

j = 2 *i ;
item = a[i] ;
while (j < n) do

29

{
if ((j < n) and (a (j) < a (j + 1)) then j ß j + 1;
 // compare left and right child and let j be the larger child
if (item > a (j)) then break;

// a position for item is found
else a[j / 2] = a[j] // move the larger child up a level
j = 2 * j;

}
a [j / 2] = item;

}

Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by 26 and this
node with data 26 is removed from the tree. Next 26 at root node is compared with its two child 45
and 63. As 63 is greater, they are interchanged. Now, 26 is compared with its children, namely, 57
and 42, as 57 is greater, so they are interchanged. Now, 26 appears as the leave node, hence re-
heap is completed.

9 9

4 5 6 3

3 5 5 7 4 2 2 9

2 7 1 2 2 4 2 6

6 3

4 5 5 7

3 5 2 6 4 2 2 9

2 7 1 2 2 4

2 6 6 3

2 6
5 7

2 6

De l e t i n g t h e n o d e w it h d a t a 9 9 Af t er De l e t i o n o f n o d e w it h d a t a 9 9

HEAP SORT:

A heap sort algorithm works by first organizing the data to be sorted into a special type of binary tree
called a heap. Any kind of data can be sorted either in ascending order or in descending order using
heap tree. It does this with the following steps:

1. Build a heap tree with the given set of data.

2. a. Remove the top most item (the largest) and replace it with the last
element in the heap.

b. Re-heapify the complete binary tree.

c. Place the deleted node in the output.

3. Continue step 2 until the heap tree is empty.

Algorithm:

This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non-decreasing order.
First transform the elements into a heap.

heapsort(a, n)
{

heapify(a, n);
for i = n to 2 by – 1 do
{

temp = a[I];
a[i] = a[1];
a[1] = t;
adjust (a, 1, i – 1);

}

30

}

heapify (a, n)
//Readjust the elements in a[n] to form a heap.
{

for i ß n/2 to 1 by – 1 do adjust (a, i, n);
}

adjust (a, i, n)
// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to form a single
heap, 1 < i < n. No node has an address greater than n or less than 1. //
{

j = 2 *i ;
item = a[i] ;
while (j < n) do
{

if ((j < n) and (a (j) < a (j + 1)) then j ß j + 1;
 // compare left and right child and let j be the larger child
if (item > a (j)) then break;

// a position for item is found
else a[j / 2] = a[j] // move the larger child up a level
j = 2 * j;

}
a [j / 2] = item;

}

Time Complexity:

Each ‘n’ insertion operations takes O(log k), where ‘k’ is the number of elements in the heap at the
time.

Likewise, each of the ‘n’ remove operations also runs in time O(log k), where ‘k’ is the number of
elements in the heap at the time.

Since we always have k ≤ n, each such operation runs in O(log n) time in the worst case.

Thus, for ‘n’ elements it takes O(n log n) time, so the priority queue sorting algorithm runs in O(n log
n) time when we use a heap to implement the priority queue.

Example 1:

Form a heap from the set of elements (40, 80, 35, 90, 45, 50, 70) and sort the data using heap sort.

Solution:

First form a heap tree from the given set of data and then sort by repeated deletion operation:

31

4 0

3 5 8 0

7 0 9 0 4 5 5 0

4 0

7 0 8 0

3 5 9 0 4 5 5 0

4 0

8 0

9 0

5 0 3 5

7 0

9 0

8 0

4 0

4 5

7 0

3 5

3 5

3 5

7 0

5 0 3 5

7 0

9 0

4 0

8 0

4 5

4 5 5 0 3 5

32

3 5

7 0

9 0

8 0

5 0 4 5 4 0

8 0

3 5 4 5

3 5

8 0

7 0

9 0

4 5

5 0 3 5 4 0

9 0

4 5 7 0

5 0

8 0 3 5 4 0

7 0

5 0

8 0 3 5 4 0

4 5

7 0

9 0

5 0

3 5

5 0 4 5

3 5

4 0 7 0 8 0 9 0

5 0

8 0

3 5

7 0 4 0

4 5

5 0

9 0

1 . Exc h a n g e r o o t 9 0 w it h t h e l a s t e l e m e n t 3 5 o f t h e a r r ay a n d r e - h e a p if y

2 . Exc h a n g e r o o t 8 0 w it h t h e l a s t e l e m e n t 5 0 o f t h e a r r ay a n d r e - h e a p if y

3 . Exc h a n g e r o o t 7 0 w it h t h e l a s t e l e m e n t 3 5 o f t h e a r r ay a n d r e - h e a p if y

4 0

3 5

9 0

4 5

8 0 7 0 5 0

4 5

4 0

4 5

3 5

9 0

4 0

8 0 7 0 5 0

9 0

4 0 4 5

3 5

8 0 7 0 5 0

4 0

8 0 7 0 5 0

3 5

4 0

9 0

4 5

4 0

4 5 3 5

5 0 7 0 8 0 9 0

3 5

8 0

4 5

7 0 5 0

4 0

3 5

9 0

3 5

4 0

4 . Exc h a n g e r o o t 5 0 w it h t h e l a s t e l e m e n t 4 0 o f t h e a r r ay a n d r e - h e a p if y

5 . Exc h a n g e r o o t 4 5 w it h t h e l a s t e l e m e n t 3 5 o f t h e a r r ay a n d r e - h e a p if y

6 . Exc h a n g e r o o t 4 0 w it h t h e l a s t e l e m e n t 3 5 o f t h e a r r a y a n d r e - h e a p if y

T h e s o r t e d t r e e

Program for Heap Sort:

33

include <stdio.h>
include <conio.h>

void adjust(int i, int n, int a[])
{

int j, item;
j = 2 * i;
item = a[i];
while(j <= n)
{

if((j < n) && (a[j] < a[j+1]))
j++;

if(item >= a[j])
break;

else
{

a[j/2] = a[j];
j = 2*j;

}
}
a[j/2] = item;

}

void heapify(int n, int a[])
{

int i;
for(i = n/2; i > 0; i--)

adjust(i, n, a);
}

void heapsort(int n,int a[])
{

int temp, i;
heapify(n, a);
for(i = n; i > 0; i--)
{

temp = a[i];
a[i] = a[1];
a[1] = temp;
adjust(1, i - 1, a);

}
}

void main()
{

int i, n, a[20];
clrscr();
printf("\n How many element you want: ");
scanf("%d",&n);
printf("Enter %d elements: ",n);
for (i=1;i<=n;i++)

scanf("%d", &a[i]);
heapsort(n, a);
printf("\n The sorted elements are: \n");
for (i=1;i<=n;i++)

printf("%5d",a[i]);
getch();

}

MERGE SORT

34

Princ i p l e : The given list is divided into two roughly equal parts called
the left and the right subfiles. These subfiles are sorted using the
algorith m recursively and then the two subfiles are merged together to
obtain the sorted file.

Given a sequenc e of n element s A[1], ….A[N], the genera l idea is to
imagine them split into two sets A[1],…A[N/2] and A[(N/2) + 1],…A[N].
Each set is individually sorted, and the resul ting sorted sequences are
merged to produce a single sorted sequenc e of N elemen t s . Thus this
sorting method follows Divide and Conque r stra tegy.

Algor i t h m :

Proce d u r e MERGE(A, low, mid, high)

// A is the array containing the list of data items

I ß low, J ß mid+ 1, K ß low
While I mid and J high≤ ≤

If A[I] < A[J]
Then

Temp[K] ß A[I]
I ß I + 1
K ß K+1

Else
Temp[K] ß A[J]
J ß J + 1
K ß K + 1

End If
End While

If I > mid
Then

While J high≤

Temp[K] ß A[J]
K ß K + 1
J ß J + 1

End While
Else

While I mid≤

Temp[K] ß A[I]
K ß K + 1
I ß I + 1

End While
End If

Repea t for K = low to high step 1
A[K] ß Temp[K]

End Repea t
End MERGE

35

Proce d u r e MERGESORT(A, low, high)

// A is the array containing the list of data items

If low < high
Then

mid ß (low + high)/2
MERGESORT(low, high)
MERGESORT(mid + 1, high)
MERGE(low, mid, high)

End If
End MERGESORT

The first algorithm MERGE can be applied on two sorted lists to
merge them. Initially, the index variable I points to low and J points to
mid + 1. A[I] is compare d with A[J] and if A[I] found to be lesse r than
A[J] then A[I] is stored in a tempora ry array and I is increm en t e d
otherwise A[J] is stored in the tempora ry array and J is increme n t e d .
This comparison is continued until either I crosses mid or J crosses high.
If I crosses the mid first then that implies that all the element s in first list
is accommod a t e d in the tempora ry array and hence the remaining
element s in the second list can be put into the tempora ry array as it is. If
J crosses the high first then the remaining element s of first list is put as
it is in the tempora ry array. After this process we get a single sorted list.
Since this method merges 2 lists at a time, this is called 2-way merge
sort.

In the MERGESORT algorithm, the given unsor t ed list is first split
into N numbe r of lists, each list consisting of only 1 elemen t . Then the
MERGE algorithm is applied for first 2 lists to get a single sorted list.
Then the same thing is done on the next two lists and so on. This process
is continued till a single sorted list is obtained.

Exam p l e :

Let L à low, Mà mid, H à high

i = 0 i =1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

42 23 74 11 65 58 94 36 99 87

U M H

In each pass the mid value is calcula ted and based on that the list is split
into two. This is done recurs ively and at last N number of lists each
having only one element is produce d as shown.

36

Now merging opera t ion is called on first two lists to produce a single
sorted list, then the same thing is done on the next two lists and so on.
Finally a single sorted list is obtained.

Progr a m :

void array::sor t(in t low, int high)
{

int mid;
if (low<high)
{

mid=(low + h igh)/2;
sort(low,mid);
sort(mid + 1 , high);
merge(low, mid, high);

}
}

void array::merg e(in t low, int mid, int high)
{
int i=low, j=mid + 1 , k=low, temp[MAX];

while (i< = mid && j<= high)
if (a[i]<a[j])

temp[k + +] = a [i + +] ;
else

temp[k + +] = a [j + +] ;

if (i>mid)
while (j< = high)

temp[k + +] = a [j + +] ;
else

while (i< = mid)
temp[k + +] = a [i + +] ;

37

for (k=low; k< = high; k+ +)
a[k]= te m p[k];

}

Advan t a g e s :

1. Very useful for sorting bigger lists.
2. Applicable for external sorting also.

Disad v a n t a g e s :

1. Needs a tempora ry array every time, for storing the new sorted
list.

shell Sort
The she l l sort , sometimes called the “diminishing increm en t sort ,”
improves on the inser tion sort by breaking the original list into a numbe r
of smaller sublists, each of which is sorted using an inser tion sort . The
unique way that these sublists are chosen is the key to the shell sort.
Instead of breaking the list into sublists of contiguous items, the shell
sort uses an increm en t i, sometimes called the gap , to crea te a sublist by
choosing all items that are i items apar t .

Example of shell Sort : Use Shell sort for the following array : 18, 32, 12,
5, 38, 30, 16, 2

Compare the elemen ts at a gap of 4. i.e 18 with 38 and so on and swap if
first number is great e r than second.

38

Compare the elemen ts at a gap of 2 i.e 18 with 12 and so on.

Now the gap is 1. So now use inser t ion sort to sort this array.

After inser tion sort. The final array is sorted.

39

UNIT- II
STACKS

The data structu r e s seen so far, allows inser t ion and deletion of
element s at any place. But sometimes it is required to permit the
addition and deletion of elemen t s only at one end that is either at the
beginning or at the end.

Stac k s : A stack is a data structure in which addition of new elemen t
or deletion of an existing elem en t always takes place at the same end.
This end is often known as top of stack. When an item is added to a
stack, the operation is called push, and when an item is removed from
the stack the operation is called pop. Stack is also called as Last- In-
First- Out (LIFO) list.

Operat io n s on Stack:

There are two possible opera t ions done on a stack. They are pop
and push opera t ion.

 Push: Allows adding an elemen t at the top of the stack.
 Pop: Allows removing an elem en t from the top of the stack.

The Stack can be implemen te d using both arrays and linked lists.
When dynamic memory allocation is prefer r e d we go for linked lists to
implemen t the stacks.

ARRAY IMPLEMENTATION OF THE STACK

Push operat io n:

If the elemen ts are added continuously to the stack using the push
opera t ion then the stack grows at one end. Initially when the stack is
empty the top = -1. The top is a variable which indicates the position of
the topmos t element in the stack.

40

PUSH(x)

If top = MAX – 1
Then

Print “Stack is full”
Return

Else
Top = top + 1
A[top] = x

End if
End PUSH()

Pop operat i o n:

On deletion of element s the stack shrinks at the same end, as the
element s at the top get removed.

POP()

If top = -1
Then

Print “Stack is empty”
Return

Else
Item = A[top]
A[Top] = 0
Top = top – 1
Return item

End if
End POP()

If arrays are used for implemen t ing the stacks, it would be very
easy to manage the stacks. However , the problem with an array is that
we are required to declare the size of the array before using it in a
progra m. This means the size of the stack should be fixed. We can
declare the array with a maximum size large enough to manage a stack.
As resul t, the stack can grow or shrink within the space reserved for it.
The following progra m implemen t s the stack using array.

Progr a m :

41

// Stack and various opera t ions on it

#include <iost re a m. h >
#include <conio.h >

const int MAX=20;
class stack
{
private:

int a[MAX];
int top;

public:
stack();
void push(int x);
int pop();
void display();

};

stack::s tack()
{

top=- 1;
}

void stack::push(in t x)
{

if (top= = MAX- 1)
{

cout < < " \ nS t a ck is full!";
return;

}
else
{

top+ + ;
a[top] =x;

}
}

int stack::pop()
{

if (top= = - 1)
{

cout < < " \ nS t a ck is empty!";
return NULL;

}
else
{

int item = a[top];
top- -;
return item;

42

}
}

void stack::display()
{

int temp = t o p ;
while (temp! =- 1)

cout < < " \ n" < < a [t e m p- -];
}
void main()
{

clrscr();
stack s;
int n;
s.push(10);
s.push(20);
s.push(30);
s.push(40);
s.display();
n=s.pop();
cout < < " \ nPop p e d item:"< < n ;
n=s.pop();
cout < < " \ nPop p e d item:"< < n ;
s.display();
getch();

}

Out p u t :

40
30
20
10
Popped item:40
Popped item:30
20
10

 LINKED LIST IMPLEMENTATION OF STACK

Initially, when the stack is empty, top points to NULL. When an
element is added using the push opera t ion, top is made to point to the
lates t elemen t whicheve r is added.

Push operat io n:

Create a tempora ry node and store the value of x in the data part
of the node. Now make link part of temp point to Top and then top point
to Temp. That will make the new node as the topmost element in the
stack.

43

PUSH(x)

Info(temp) = x
Link(temp) = top
Top = temp
End PUSH()

Pop operat i o n

The data in the topmost node of the stack is first stored in a
variable called item. Then a tempora ry pointe r is crea ted to point to top.
The top is now safely moved to the next node below it in the stack. Temp
node is deleted and the item is retu rne d .

POP()

If Top = NULL
Then

Print “Stack is empty”
Return

Else
Item = info(top)
Temp = top

44

Top = link(top)
Delete temp
Return item

End if
End POP()

The following progra m implemen t s the stack using linked lists.

Progr a m :

// Stack implemen t e d using linked list

#include <iost re a m. h >
#include <conio.h >

class stack
{
private:

struct node
{

int data;
node *link;

};
node *top;

public:
stack();
~s tack();
void push(int x);
int pop();
void display();

};

stack::s tack()
{

top= N ULL;
}

stack:: ~ s t a ck()
{

node *temp;
while (top!= N ULL)
{

temp = t o p- >link;
delete top;
top= te m p;

}
}

void stack::push(in t x)
{

node *temp;

45

temp = n e w node;
temp- >da t a = x ;
temp- >link = to p;
top= te m p;

}

int stack::pop()
{

if (top= = N U LL)
{

cout < < " \ nS t a ck is empty!";
return NULL;

}
node *temp = t o p;
int item = t e m p- >da t a ;
top= te m p- >link;
delete temp;
return item;

}

void stack::display()
{

node *temp = t o p;
while (temp! = N ULL)
{

cout < < " \ n" < < t e m p- >da ta ;
temp = t e m p- >link;

}
}

void main()
{

clrscr();
stack s;
int n;
s.push(10);
s.push(20);
s.push(30);
s.push(40);
s.display();
n=s.pop();
cout < < " \ nPop p e d item:"< < n ;
n=s.pop();
cout < < " \ nPop p e d item:"< < n ;
s.display();
getch();

}

Out p u t :

40

46

30
20
10
Popped item:40
Popped item:30
20
10

APPLICATION OF STACKS

Convers io n of Infix Expres s i o n to Postf ix Expres s i o n

The stacks are frequen t ly used in evalua tion of arithme t ic
expressions . An arithme t ic expression consists of operands and
opera to r s . The operands can be numeric values or numeric variables.
The opera to r s used in an arithm et ic expression repres e n t the opera t ions
like addition, subtrac t ion, multiplica tion, division and exponen t ia t ion.

The arithme t ic express ion expresse d in its normal form is said to
be Infix nota tion, as shown:

A + B

The above express ion in prefix form would be repres en t e d as follows:

+ AB

The same expression in postfix form would be repres e n t e d as follows:

AB +

Hence the given expression in infix form is first conver t ed to postfix form
and then evaluate d to get the resul ts .

The function to conver t an expression from infix to postfix consis ts
following steps:

1. Every charac t e r of the expression string is scanned in a while loop
until the end of the expression is reached.

2. Following steps are performe d depending on the type of charac t e r
scanned.

(a) If the charac t e r scanne d happens to be a space then that
charac t e r is skipped.

(b) If the charac t e r scanne d is a digit or an alphabe t , it is added
to the targe t string pointed to by t.

(c) If the charac t e r scanned is a closing paren th es is then it is
added to the stack by calling push() function.

(d) If the charac t e r scanne d happens to be an opera to r , then
firstly, the topmost element from the stack is ret rieved.
Through a while loop, the priorities of the charac t e r scanned

47

and the charac t e r popped ‘opr’ are compare d . Then
following steps are performe d as per the precede nc e rule.

i. If ‘opr’ has higher or same priority as the charac t e r
scanned, then opr is added to the targe t string.

ii. If opr has lower precede nc e than the charac t e r
scanned, then the loop is termina t ed . Opr is pushed
back to the stack. Then, the charac t e r scanned is also
added to the stack.

(e) If the charac t e r scanned happens to be an opening
paren the s i s , then the opera to r s presen t in the stack are
ret rieved through a loop. The loop continues till it does not
encoun te r a closing paren th es is . The opera to r s popped, are
added to the targe t string pointed to by t.

2. Now the string pointed by t is the required postfix expression.

Progr a m :

// Progra m to conver t an Infix form to Postfix form

#include <iost re a m. h >
#include <s t ring.h >
#include <ctype.h >
#include <conio.h >

const int MAX=50;

class infix
{

private:

char targe t[MAX], stack[MAX];
char *s, *t;
int top;

public:

infix();
void push(cha r c);
char pop();
void conver t(cha r *str);
int priority (char c);
void show();

};

infix::infix()
{

top=- 1;
strcpy(ta rg e t ,"");
strcpy(st ack,"");
t=ta rg e t ;
s="";

48

}

void infix::push(cha r c)
{

if (top= = MAX- 1)
cout < < " \ nS t a ck is full\n!";

else
{

top+ + ;
stack[top] = c ;

}
}

char infix::pop()
{

if (top= = - 1)
{

cout < < " \ nS t a ck is empty\n";
return -1;

}
else
{

char item = s t a c k[top];
top- -;
return item;

}
}
void infix::conver t(cha r *str)
{

s=s t r ;
while(*s!= ' \0 ')
{

if (*s= = ' '| |*s = = ' \ t ')
{

s+ +;
continue;

}
if (isdigit(*s) || isalpha(*s))
{

while(isdigit(*s) || isalpha(*s))
{

*t=*s;
s+ +;
t+ + ;

}
}
if (*s= = ' (')
{

push(*s);
s+ +;

49

}
char opr;
if (*s= = '* ' | |*s = = ' + ' | |* s = = ' / ' | |*s = = ' % ' | |*s = = ' - '| |*s = = ' ^ ')
{

if (top!=- 1)
{

opr= pop();
while (priori ty(opr) > = p r io r i ty(*s))
{

*t=opr;
t+ + ;
opr= pop();

}
push(opr);
push(*s);

}
else

push (*s);
s+ +;

}

if (*s= = ') ')
{

opr= pop();
while ((opr)!= ' (')
{

*t=opr;
t+ + ;
opr= pop();

}
s+ +;

}
}

while (top!=- 1)
{

char opr= po p();
*t=opr;
t+ + ;

}

*t='\0 ' ;
}

int infix::priori ty(cha r c)
{

if (c= = ' ^ ')
return 3;

if (c= = '* ' | | c = = ' / ' | | c = = ' % ')
return 2;

50

else
{

if (c= = ' + ' | | c = = ' - ')
return 1;

else
return 0;

}
}

void infix::show()
{
 cout < < t a r g e t ;
}

void main()
{

clrscr();
char expr[MAX], *res[MAX];
infix q;

cout < < " \ nE n t e r an expression in infix form: ";
cin> > e x p r ;
q.conver t(expr);

cout < < " \ nThe postfix express ion is: ";
q.show();
getch();

}

Out p u t :

Enter an expression in infix form: 5^2- 5

Stack is empty

The postfix expression is: 52 ^ 5-

Evaluat io n of Expres s i o n enter e d in postf ix form

The progra m takes the input expression in postfix form. This
expression is scanned charac t e r by charac t e r . If the charac t e r scanned
is an operand, then first it is conver t ed to a digit form and then it is
pushed onto the stack. If the charac t e r scanned is a blank space, then it
is skipped. If the charac t e r scanne d is an opera to r , then the top two
element s from the stack are ret rieved. An arithm et ic opera t ion is
performe d between the two operands. The type of arithme t ic opera t ion
depends on the opera to r scanne d from the string s. The resul t is then
pushed back onto the stack. These steps are repea t e d as long as the
string s is not exhaus t ed . Finally the value in the stack is the required
result and is shown to the user.

51

Progr a m :

// Progra m to evaluate an expression ente red in postfix form

#include <iost re a m. h >
#include <s tdlib.h >
#include <ma t h .h >
#include <ctype.h >
#include <conio.h >

const int MAX=50;

class postfix
{

private:

int stack[MAX];
int top, n;
char *s;

public:

postfix();
void push(int item);
int pop();
void calcula te(cha r *str);
void show();

};

postfix::postfix()
{

top=- 1;
}

void postfix::push(in t item)
{

if (top= = MAX- 1)
cout < < e n d l < < " S t a c k is full";

else
{

top+ + ;
stack[top] = i t e m;

}
}

int postfix::pop()
{

if (top= = - 1)
{

cout < < e n d l < < " S t a c k is empty";

52

return NULL;
}
int data = s t a c k[top];
top- -;
return data;

}
void postfix::calcula t e(cha r *str)
{

s=s t r ;
int n1, n2, n3;
while (*s)
{

if (*s= = ' '| |*s = = ' \ t ')
{

s+ +;
continue;

}
if (isdigit(*s))
{

n=*s- '0';
push(n);

}
else
{

n1= pop();
n2= pop();
switch(*s)
{

case '+':
 n3=n 2 + n 1 ;
 break;

case '- ':
 n3=n 2- n1;
 break;

case '/':
 n3=n 2/n1;
 break;

case '*':
 n3=n 2*n1;
 break;

case '%':
 n3=n 2%n 1;
 break;

case ' ^ ' :
 n3=pow(n2, n1);
 break;

default:
 cout < < "U nk no w n opera to r";
 exit(1);

}
push(n3);

53

}
s+ +;

}
}
void postfix::show()
{

n=pop();
cout < < "R e s u l t is: "< < n;

}
void main()
{

clrscr();
char expr[MAX];
cout < < "\nEnte r postfix expression to be evalua ted : ";
cin> > e x p r ;
postfix q ;
q.calcula te(exp r);
q.show();
getch();

}

Out p u t :
Enter postfix express ion to be evaluat ed : 53 ^ 5-
Result is: 120

QUEUE

Que u e: Queue is a linear data structure that permits insertion of new
elem en t at one end and deletion of an elemen t at the other end. The
end at which the deletion of an elem en t take place is called front, and
the end at which insertion of a new elemen t can take place is called
rear. The deletion or insertion of elemen t s can take place only at the
front or rear end of the list respect ively .

The first elemen t that gets added into the queue is the first one to
get removed from the list. Hence, queue is also refer red to as First- In-
First- Out list (FIFO). Queues can be repres en t e d using both arrays as
well as linked lists.

ARRAY IMPLEMENTATION OF QUEUE

If queue is implemen t e d using arrays, the size of the array should
be fixed maximum allowing the queue to expand or shrink.

Operat io n s on a Queu e

There are two common opera t ions one in a queue. They are
addition of an elemen t to the queue and deletion of an elemen t from the
queue. Two variables front and rear are used to point to the ends of the
queue. The front points to the front end of the queue where deletion
takes place and rear points to the rear end of the queue, where the

54

addition of element s takes place. Initially, when the queue is full, the
front and rear is equal to -1.

Add(x)

An element can be added to the queue only at the rear end of the
queue. Before adding an element in the queue, it is checked whethe r
queue is full. If the queue is full, then addition cannot take place.
Otherwise , the element is added to the end of the list at the rear side.

ADDQ(x)

If rear = MAX – 1
Then

Print “Queue is full”
Return

Else
Rear = rear + 1
A[rear] = x
If front = -1
Then

Front = 0
End if

End if
End ADDQ()

Del()

The del() opera t ion deletes the element from the front of the
queue. Before deleting and element , it is checked if the queue is empty.
If not the element pointed by front is deleted from the queue and front is
now made to point to the next elemen t in the queue.

DELQ()

If front = -1
Then

Print “Queue is Empty”
Return

55

Else
Item = A[front]
A[front] = 0
If front = rear
Then

Front = rear = -1
Else

Front = front + 1
End if
Return item

End if
End DELQ()

Progr a m :

// Queues and various opera t ions on it – Using arrays

#include <iost re a m. h >
#include <conio.h >

const int MAX=10;
class queue
{
private:

int a[MAX], front, rear;
public:

queue();
void addq(int x);
int delq();
void display();

};

queue::que u e()
{

front = r e a r = - 1;
}

void queue::addq(in t x)
{

if (rear = = M AX- 1)
{

cout < < "Q u e u e is full!";
return;

}
rear + + ;
a[rea r] = x;
if (front = = - 1)

front = 0 ;
}

int queue::delq()

56

{
if (front = = - 1)
{

cout < < "Q u e u e is empty!";
return NULL;

}
int item = a[f ron t];
a[front] = 0 ;
if (front = = r e a r)

front = r e a r = - 1;
else

front + + ;
return item;

}

void queue::display()
{

if (front = = - 1)
return;

for (int i=front; i<= r e a r ; i+ +)
cout < < a [i] < < " \ t" ;

}

void main()
{

clrscr();
queue q;
q.addq(50);
q.addq(40);
q.addq(90);
q.display();
cout < < e n d l ;
int i=q.delq();
cout < < e n d l ;
cout < < i < < " deleted!";
cout < < e n d l ;
q.display();
i=q.delq();
cout < < e n d l ;
cout < < i < < " deleted!";
cout < < e n d l ;
i=q.delq();
cout < < i < < " deleted!";
cout < < e n d l ;
i=q.delq();

getch();
}

Out p u t :

57

50 40 90

50 deleted!
40 90
40 deleted!
90 deleted!
Queue is empty!

58

Unit 3
LINKED LISTS

Linked lists and arrays are similar since they both store collections of
data. One way to think about linked lists is to look at how arrays work
and think about alterna t e approache s .

Array is the most common data structure used to store collections of elements. Arrays are convenient
to declare and provide the easy syntax to access any element by its index number. Once the array is
set up, access to any element is convenient and fast.

The disadva n t a g e s of arrays are:

 The size of the array is fixed. Most often this size is specified at
compile time. This makes the progra m m e r s to allocate arrays ,
which seems "large enough" than required .

 Inser ting new elemen ts at the front is potentially expensive
because existing element s need to be shifted over to make
room.

 Deleting an elemen t from an array is not possible.

Linked lists have their own strengths and weaknesses, but they happen to be strong where arrays are
weak. Generally array's allocates the memory for all its elements in one block whereas linked lists use
an entirely different strategy.

Linked lists allocate memory for each element separa t e ly and only when
necessa ry.

Here is a quick review of the terminology and rules of pointe r s . The
linked list code will depend on the following functions:

malloc () is a system function which allocates a block of memory in the
"heap" and returns a pointe r to the new block. The prototype of malloc()
and other heap functions are in stdlib.h. malloc() returns NULL if it
cannot fulfill the reques t . It is defined by:

void *malloc (number_of_bytes)

Since a void * is returned the C standard states that this pointer can be converted to any type. For
example,

char *cp;
cp = (char *) malloc (100);

Attempts to get 100 bytes and assigns the starting address to cp. We can also use the sizeof()
function to specify the number of bytes. For example,

int *ip;
ip = (int *) malloc (100*sizeof(int));

59

free() is the opposite of malloc(), which de-allocates memory. The argument to free() is a pointer to a
block of memory in the heap — a pointer which was obtained by a malloc() function. The syntax is:

free (ptr);

The advantage of free() is simply memory management when we no longer need a block.

6.1. Linked List:

A linked list is a non-sequential collection of data items. It is a dynamic data structure. For every data
item in a linked list, there is an associated pointer that would give the memory location of the next
data item in the linked list.

The data items in the linked list are not in consecutive memory locations. They may be anywhere, but
the accessing of these data items is easier as each data item contains the address of the next data
item.

Advanta g e s of linked lists:

Linked lists have many advantage s . Some of the very impor tan t
advanta g es are:

1. Linked lists are dynamic data structu r e s . i.e., they can grow or
shrink during the execution of a progra m.

2. Linked lists have efficient memory utilization. Here, memory is
not pre- allocated . Memory is allocated wheneve r it is required
and it is de- allocated (removed) when it is no longer needed.

3. Inser tion and Deletions are easier and efficient . Linked lists
provide flexibility in inser t ing a data item at a specified position
and deletion of the data item from the given position.

4. Many complex applica tions can be easily carried out with linked
lists.

Disadva n t a g e s of linked list s:

1. It consumes more space because every node requires a
additional pointe r to store address of the next node.

2. Searching a par ticula r element in list is difficult and also time
consuming.

Types of Linked Lists:

Basically we can put linked lists into the following four items:

1. Single Linked List.

2. Double Linked List.

60

3. Circular Linked List.

4. Circular Double Linked List.

A single linked list is one in which all nodes are linked togethe r in some
sequen tial manne r . Hence, it is also called as linear linked list.

A double linked list is one in which all nodes are linked togethe r by
multiple links which helps in accessing both the successor node (next
node) and predeces so r node (previous node) from any arbit r a ry node
within the list. Therefore each node in a double linked list has two link
fields (pointe r s) to point to the left node (previous) and the right node
(next). This helps to traverse in forward direc tion and backward
direction.

A circular linked list is one, which has no beginning and no end. A single
linked list can be made a circular linked list by simply storing addre ss of
the very first node in the link field of the last node.

A circular double linked list is one, which has both the successor pointer
and predec es so r pointe r in the circula r manne r .

Compari s o n betw e e n array and linke d list:

ARRAY LINKED LIST

Size of an array is fixed Size of a list is not fixed

Memory is allocated from stack Memory is allocated from heap

It is necess a ry to specify the
number of elemen ts during
declara t ion (i.e., during compile
time).

It is not necessa ry to specify the
number of elemen ts during
declara t ion (i.e., memory is
allocated during run time).

It occupies less memory than a
linked list for the same number
of elemen ts .

It occupies more memory.

Inser ting new elemen ts at the
front is potentially expensive
because existing element s need
to be shifted over to make room.

Inser ting a new elemen t at any
position can be carried out easily.

Deleting an elemen t from an
array is not possible.

Deleting an elemen t is possible.

Applica t io n s of linked list:

1. Linked lists are used to repre se n t and manipula t e polynomial.
Polynomials are express ion containing terms with non zero
coefficient and exponen t s . For example:

P(x) = a 0 Xn + a 1 Xn-1 + …… + a n-1 X + a n

61

2. Represe n t very large number s and opera tions of the large numbe r
such as addition, multiplica tion and division.

3. Linked lists are to implemen t stack, queue, trees and graphs .

4. Impleme n t the symbol table in compiler const ruc t ion

6.2. Singl e Linked List:

A linked list allocates space for each element separately in its own block of memory called a "node".
The list gets an overall structure by using pointers to connect all its nodes together like the links in a
chain.

Each node contains two fields; a "data" field to store whateve r element ,
and a "next" field which is a pointe r used to link to the next node.

Each node is allocated in the heap using malloc(), so the node memory
continues to exist until it is explicitly de- allocated using free(). The front
of the list is a pointe r to the “star t” node. A single linked list is shown in
figure 6.2.1.

1 0 0

1 0 2 0 0 2 0 3 0 0 3 0 4 0 0 4 0 X

1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 2 . 1 . S i n g l e L i n k e d L i s t

 H E A P S T A C K

T h e n e xt f i e l d o f
t h e l a s t n o d e i s
N ULL .

T h e s t a r t
p o i n t e r
h o l d s t h e
a d d r e s s o f
t h e f ir s t
n o d e o f t h e
l i s t .

Eac h n o d e
s t o r e s t h e d a t a .

St o r e s t h e n e xt
n o d e a d d r e s s.

The beginning of the linked list is stored in a " start " pointer which points
to the first node. The first node contains a pointe r to the second node.
The second node contains a pointer to the third node, ... and so on. The
last node in the list has its next field set to NULL to mark the end of the
list. Code can access any node in the list by star ting at the start and
following the next pointer s .

The start pointe r is an ordinary local pointe r variable, so it is drawn
separa t e ly on the left top to show that it is in the stack. The list nodes
are drawn on the right to show that they are allocated in the heap.

Imple m e n t a t i o n of Singl e Linked List:

62

Before writing the code to build the above list, we need to crea te a start
node , used to crea te and access other nodes in the linked list. The
following structu r e definition will do (see figure 6.2.2):

 Creating a structu r e with one data item and a next pointe r ,
which will be pointing to next node of the list. This is called as
self- referen tial structu r e .

 Initialise the star t pointe r to be NULL.

 NULL

s t a r t

Fi g u r e 6 . 2 . 2 . St r uc t u r e d e f i n it i o n , s i n g l e l i n k n o d e a n d e m p t y l i s t

E m p t y lis t :

st r uct s l in k l ist
{

in t d at a;
st r uct s l in k l ist * n e x t ;

} ;

t y p e d ef st r uct s l in k l ist no d e;

 no d e * st a r t = N U LL;

 d a t a n e xt n o d e :

The basic operat io n s in a sing l e linke d list are:

 Creation.

 Inser tion.

 Deletion.

 Traversing.

Creating a node for Single Linked List:

Creating a singly linked list starts with creating a node. Sufficient memory has to be allocated for
creating a node. The information is stored in the memory, allocated by using the malloc() function.
The function getnode(), is used for creating a node, after allocating memory for the structure of type
node, the information for the item (i.e., data) has to be read from the user, set next field to NULL and
finally returns the address of the node. Figure 6.2.3 illustrates the creation of a node for single linked
list.

no d e* g et no d e()
{
 no d e* n e w no d e;
 n e w no d e = (no d e *) m a l lo c(s iz eo f (no d e)) ;
 p r in t f (" \ n Ent e r d at a: ") ;
 sca nf (" % d " , & n e w no d e - > d at a) ;
 n e w no d e - > n e x t = NULL;
 r et u r n n e w no d e;
}

 1 0 X

n e w n o d e

1 0 0

Fi g u r e 6 . 2 . 3 . n e w n o d e w it h a v a l u e o f 1 0

Creat in g a Sing ly Linked List with ‘n’ nu mb e r of node s :

The following steps are to be followed to create ‘n’ number of nodes:

63

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;
 If the list is not empty, follow the steps given below:

 The next field of the new node is made to point the first
node (i.e. star t node) in the list by assigning the address of
the first node.

 The star t pointe r is made to point the new node by
assigning the address of the new node.

 Repea t the above steps ‘n’ times.

Figure 6.2.4 shows 4 items in a single linked list stored at differen t
locations in memory.

1 0 0

1 0 2 0 0 2 0 3 0 0 3 0 4 0 0 4 0 X

1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 2 . 4 . S i n g l e L i n k e d L i s t w it h 4 n o d e s

The function creat elis t(), is used to create ‘n’ number of nodes:

v o id c r e at e l ist (in t n)
{
 in t i;
 no d e * n e w no d e;
 no d e * t e m p ;
 fo r (i = 0 ; i < n ; i+ +)
 {
 n e w no d e = g et no d e() ;
 if (st a r t = = N U LL)
 {
 s t a r t = n e w no d e;
 }
 e ls e
 {
 t e m p = st a r t ;
 w h i le(t e m p - > n e x t ! = N U LL)
 t e m p = t e m p - > n e x t ;
 t e m p - > n e x t = n e w no d e;
 }
 }
}

64

Insert io n of a Nod e:

One of the most primitive operations that can be done in a singly linked list is the insertion of a node.
Memory is to be allocated for the new node (in a similar way that is done while creating a list) before
reading the data. The new node will contain empty data field and empty next field. The data field of
the new node is then stored with the information read from the user. The next field of the new node is
assigned to NULL. The new node can then be inserted at three different places namely:

 Inser ting a node at the beginning.

 Inser ting a node at the end.

 Inser ting a node at interme dia t e position.

Insert in g a node at the begi n n i n g :

The following steps are to be followed to inser t a new node at the
beginning of the list:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

newnode -> next = star t;
start = newnode;

The function inser t_at_beg(), is used for inser t ing a node at the
beginning

Figure 6.2.5 shows inser ting a node into the single linked list at the
beginning.

65

5 0 0

1 0 2 0 0 2 0 3 0 0 3 0 4 0 0 4 0 X
1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 2 . 5 . I n s e r t i n g a n o d e a t t h e b e g i n n i n g

5 1 0 0

5 0 0

Insert in g a node at the end:

The following steps are followed to inser t a new node at the end of the
list:

 Get the new node using getnode()

newnode = getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:

temp = star t ;
while(tem p -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

The function inser t_at_end(), is used for inser ting a node at the end.

Figure 6.2.6 shows inser ting a node into the single linked list at the end.

1 0 0

1 0 2 0 0 2 0 3 0 0 3 0 4 0 0 4 0 5 0 0
1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 2 . 6 . I n s e r t i n g a n o d e a t t h e e n d .

5 0 X

5 0 0

Insert in g a node at inter m e d i a t e posi t io n:

The following steps are followed, to insert a new node in an intermediate position in the list:

 Get the new node using getnode().

newnode = getnode();

66

 Ensure that the specified position is in between first node and
last node. If not, specified position is invalid. This is done by
countnode() function.

 Store the star ting addres s (which is in star t pointe r) in temp and

prev pointe r s . Then travers e the temp pointe r upto the specified
position followed by prev pointe r .

 After reaching the specified position, follow the steps given
below:

prev -> next = newnode;
newnode -> next = temp;

 Let the interme dia t e position be 3.

The function inser t_at_mid(), is used for inser ting a node in the
interme dia t e position.

Figure 6.2.7 shows inserting a node into the single linked list at a specified intermediate position other
than beginning and end.

1 0 0

1 0 2 0 0 2 0 5 0 0 3 0 4 0 0 4 0 X
1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 2 . 7 . I n s e r t i n g a n o d e a t a n i n t e r m e d i a t e p o s it i o n .

5 0 3 0 0

5 0 0

t e m p p r ev

n e w n o d e

Delet i o n of a nod e:

Another primitive opera t ion that can be done in a singly linked list is the
deletion of a node. Memory is to be released for the node to be deleted. A
node can be deleted from the list from three differen t places namely.

 Deleting a node at the beginning.

 Deleting a node at the end.

 Deleting a node at interm e dia t e position.

Delet i n g a node at the begin n i n g :

67

The following steps are followed, to delete a node at the beginning of the
list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = star t ;
star t = star t -> next;
free(tem p);

The function delete_at_beg(), is used for deleting the first node in the list.

Figure 6.2.8 shows deleting a node at the beginning of a single linked list.

2 00

1 0 20 0 2 0 3 00 30 4 0 0 4 0 X
1 0 0 20 0 3 00 40 0

st a rt

Fig ur e 6. 2. 8. De le t in g a no d e at t h e b eg in n ing.

t e mp

Delet i n g a node at the end:

The following steps are followed to delete a node at the end of the list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = prev = star t ;
while(tem p -> next != NULL)
{

prev = temp;
temp = temp -> next;

}
prev -> next = NULL;
free(tem p);

The function delete_at_las t(), is used for deleting the last node in the list.

Figure 6.2.9 shows deleting a node at the end of a single linked list.

68

1 0 0

1 0 2 0 0 2 0 3 0 0 3 0 X 4 0 X
1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 2 . 9 . De l e t i n g a n o d e a t t h e e n d .

Delet i n g a node at Inter m e d i a t e posi t io n:

The following steps are followed, to delete a node from an interm e dia t e
position in the list (List must contain more than two node).

 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below.

if(pos > 1 && pos < nodect r)
{

temp = prev = star t ;
ctr = 1;
while(ct r < pos)
{

prev = temp;
temp = temp -> next;
ctr+ + ;

}
prev -> next = temp -> next;
free(tem p);
printf("\n node deleted. .");

}
The function delete_at_mid(), is used for deleting the interme dia t e node
in the list.

Figure 6.2.10 shows deleting a node at a specified intermediate position other than beginning and
end from a single linked list.

1 0 0

1 0 3 0 0 2 0 3 0 0 3 0 4 0 0 4 0 X
1 0 0 2 0 0 3 0 0 4 0 0

st a rt

Fig ur e 6. 2. 1 0. De le t i n g a n o d e at a n i nt er me d ia t e p o s it i o n.

Travers a l and displayin g a list (Left to Right):

69

To display the informa tion, you have to traverse (move) a linked list,
node by node from the first node, until the end of the list is reached.
Traversing a list involves the following steps:

 Assign the addre ss of star t pointer to a temp pointe r .

 Display the information from the data field of each node.

The function traverse () is used for traversing and displaying the
information stored in the list from left to right.

v o id t r a v e rs e()
{
 no d e * t e m p ;
 t e m p = st a r t ;
 p r in t f (" \ n Th e co nt e n t s o f L ist (Lef t t o Rig h t) : \ n ") ;
 if (st a r t = = N U LL)
 p r in t f (" \ n Em p t y L ist ") ;
 e ls e
 w h i le(t e m p ! = N U LL)
 {
 p r in t f (" % d - > " , t e m p - > d at a) ;
 t e m p = t e m p - > n e x t ;
 }
 p r in t f (" X") ;
}

Alternat ive ly there is another way to traverse and display the
information. That is in reverse order . The function rev_traver se () , is used
for traversing and displaying the informa tion stored in the list from right
to left.

v o id r e v _ t r a v e rs e(no d e * st)
{
 if (st = = N U LL)
 {
 r e t u r n ;
 }
 e ls e
 {
 r e v _ t r a v e rs e(st - > n e x t) ;
 p r in t f (" % d - > " , st - > d at a) ;
 }
}

Countin g the Num b e r of Nod e s:

The following code will count the number of nodes exist in the list using
recursion .

70

in t co u nt no d e(no d e * st)
{
 if (st = = N U LL)
 r e t u r n 0 ;
 e ls e
 r e t u r n(1 + co u nt no d e(st - > n e x t)) ;
}

6.3. A Complete Source Code for the Implementation of Single Linked List:

include <stdio.h >
include <conio.h >
include <stdlib.h >

struct slinklist
{

int data;
struct slinklist *next;

};

typedef struct slinklist node;

node *star t = NULL;

int menu()
{

int ch;
clrscr();
printf("\n 1.Crea t e a list ");
printf("\n- -------------------------");
printf("\n 2.Inser t a node at beginning ");
printf("\n 3.Inser t a node at end");
printf("\n 4.Inser t a node at middle");
printf("\n- -------------------------");
printf("\n 5.Delete a node from beginning");
printf("\n 6.Delete a node from Last");
printf("\n 7.Delete a node from Middle");
printf("\n- -------------------------");
printf("\n 8.Traver se the list (Left to Right)");
printf("\n 9.Traver se the list (Right to Left)");
 printf("\n- -------------------------");
printf("\n 10. Count nodes ");
printf("\n 11. Exit ");
printf("\n\n Enter your choice: ");
scanf("%d",&ch);
return ch;

}

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> next = NULL;
return newnode;

}

int countnode(node *ptr)
{

int count = 0 ;
while(pt r != NULL)
{

count + + ;
ptr = ptr -> next;

71

}
return (count);

}

void creat elis t(in t n)
{

int i;
node *newnode;
node *temp;
for(i = 0; i < n; i++)
{

newnode = getnode();
if(star t = = NULL)
{

star t = newnode;
}
else
{

temp = star t ;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

}
}

}

void traverse()
{

node *temp;
temp = star t ;
printf("\n The conten ts of List (Left to Right): \n");
if(star t = = NULL)
{

printf("\n Empty List");
return ;

}
else

while(temp != NULL)
{

printf("%d- ->", temp -> data);
temp = temp -> next;

}
printf(" X ");

}

void rev_traver se(node *star t)
{

if(star t = = NULL)
{

return ;
}
else
{

rev_traver se(s t a r t -> next);
printf("%d -->", star t -> data);

}
}

void inser t_at_beg()
{

node *newnode;
newnode = getnode();
if(star t = = NULL)
{

star t = newnode;
}
else
{

newnode -> next = star t ;

72

star t = newnode;
}

}

void inser t_at_end()
{

node *newnode, *temp;
newnode = getnode();
if(star t = = NULL)
{

star t = newnode;
}
else
{

temp = star t ;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

}
}

void inser t_at_mid()
{

node *newnode, *temp, *prev;
int pos, nodec t r , ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodect r = countnode(s t a r t) ;
if(pos > 1 && pos < nodect r)
{

temp = prev = star t ;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr+ + ;

}
prev -> next = newnode;
newnode -> next = temp;

}
else
{

printf("posi tion %d is not a middle position", pos);
}

}

void delete_a t_beg()
{

node *temp;
if(star t = = NULL)
{

printf("\n No nodes are exist. .");
return ;

}
else
{

temp = star t ;
star t = temp -> next;
free(temp);
printf("\n Node deleted ");

}
}

void delete_a t_las t()
{

node *temp, *prev;
if(star t = = NULL)
{

73

printf("\n Empty List..");
return ;

}
else
{

temp = star t ;
prev = star t;
while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}
prev -> next = NULL;
free(temp);
printf("\n Node deleted ");

}
}

void delete_a t_mid()
{

int ctr = 1, pos, nodec t r ;
node *temp, *prev;
if(star t = = NULL)
{

printf("\n Empty List..");
return ;

}
else
{

printf("\n Enter position of node to delete: ");
scanf("%d", &pos);
nodect r = countnode(s t a r t) ;
if(pos > nodec t r)
{

printf("\nThis node doesnot exist");

}
if(pos > 1 && pos < nodect r)
{

temp = prev = star t ;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr + +;

}
prev -> next = temp -> next;
free(temp);
printf("\n Node deleted . .");

}
else
{

printf("\n Invalid position..");
getch();

}

}
}

void main(void)
{

int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{
case 1:

74

if(star t = = NULL)
{

printf("\n Number of nodes you want to crea te : ");
scanf("%d", &n);
creat elis t(n);
printf("\n List crea ted . .");

}
else

printf("\n List is already creat ed . .");
break;

case 2:
inser t_at_beg();
break;

case 3:
inser t_at_end();
break;

case 4:
inser t_at_mid();
break;

case 5:
delete_at_beg();
break;

case 6:
delete_at_las t();
break;

case 7:
delete_at_mid();
break;

case 8:
traverse();
break;

case 9:
printf("\n The conten ts of List (Right to Left): \n");
rev_traver se(s t a r t) ;
printf(" X ");
break;

case 10:
printf("\n No of nodes : %d ", countnode(s t a r t));
break;

case 11 :
exit(0);

}
getch();

}
}

6.4. Doubl e Linked List:

A double linked list is a two-way list in which all nodes will have two links. This helps in accessing
both successor node and predecessor node from the given node position. It provides bi-directional
traversing. Each node contains three fields:

 Left link.
 Data.
 Right link.

The left link points to the predece sso r node and the right link points to
the successor node. The data field stores the required data.

Many applica tions require searching forward and backward thru nodes
of a list. For example searching for a name in a telephone directory

75

would need forward and backward scanning thru a region of the whole
list.

The basic opera t ions in a double linked list are:

 Creation.
 Inser tion.
 Deletion.
 Traversing.

A double linked list is shown in figure 6.3.1.

1 0 0

 X 1 0 2 0 0 2 0 0 3 0 X

1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 3 . 1 . Do u b l e L i n k e d L i s t

 H E A P S T A C K

T h e r i g h t f i e l d o f
t h e l a s t n o d e i s
N ULL .

T h e s t a r t
p o i n t e r
h o l d s t h e
a d d r e s s o f
t h e f ir s t
n o d e o f t h e
l i s t .

St o r e s t h e d a t a . St o r e s t h e n e xt
n o d e a d d r e s s.

 1 0 0 2 0 3 0 0

St o r e s t h e
p r ev i o u s n o d e
a d d r e s s.

The beginning of the double linked list is stored in a "start " pointe r
which points to the first node. The first node’s left link and last node’s
right link is set to NULL.

The following code gives the structu r e definition:

 NULL

s t a r t

Fi g u r e 6 . 4 . 1 . St r uc t u r e d e f i n it i o n , d o u b l e l i n k n o d e a n d e m p t y l i s t

E m p t y lis t :

 st r uct d l in k l ist
 {
 st r uct d l in k l ist * le f t ;
 in t d at a;
 st r uct d l in k l ist * r ig ht ;

 } ;

 t y p e d ef st r uct d l in k l ist no d e;
 no d e * st a r t = N U LL;

 l e f t d a t a r i g h t n o d e :

Creat in g a nod e for Doubl e Linked List:

Creating a double linked list star ts with creating a node. Sufficient
memory has to be allocated for crea t ing a node. The information is
stored in the memory, allocated by using the malloc() function. The
function getnode(), is used for crea ting a node, after allocating memory
for the structu r e of type node, the information for the item (i.e., data) has
to be read from the user and set left field to NULL and right field also set
to NULL (see figure 6.2.2).

76

no d e* g et no d e()
{
 no d e* n e w no d e;
 n e w no d e = (no d e *) m a l lo c(s iz eo f (no d e)) ;
 p r in t f (" \ n Ent e r d at a: ") ;
 sca nf (" % d " , & n e w no d e - > d at a) ;
 n e w no d e - > le f t = N U LL;
 n e w no d e - > r ig ht = N U LL;
 r e t u r n n e w no d e;
}

 X 1 0 X

n e w n o d e

1 0 0

Fi g u r e 6 . 4 . 2 . n e w n o d e w it h a v a l u e o f 1 0

Creat in g a Doubl e Linked List with ‘n’ nu mb e r of node s:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().

newnode =ge tnod e();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

 The left field of the new node is made to point the
previous node.

 The previous nodes right field must be assigned with
address of the new node.

 Repea t the above steps ‘n’ times.

The function creat elis t(), is used to create ‘n’ number of nodes:

v o id c r e at e l ist (in t n)
{
 in t i;
 no d e * n e w no d e;
 no d e * t e m p ;
 fo r (i = 0 ; i < n ; i+ +)
 {
 n e w no d e = g et no d e() ;
 if (st a r t = = N U LL)
 {
 st a r t = n e w no d e;
 }
 e ls e
 {
 t e m p = st a r t ;
 w h i le(t e m p - > r ig ht)
 t e m p = t e m p - > r ig ht ;
 t e m p - > r ig ht = n e w no d e;
 n e w no d e - > le f t = t e m p ;
 }
 }
}

77

Figure 6.4.3 shows 3 items in a double linked list stored at differen t
locations.

1 0 0

 X 1 0 2 0 0 2 0 0 3 0 X

1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 4 . 3 . Do u b l e L i n k e d L i s t w it h 3 n o d e s

 1 0 0 2 0 3 0 0

Insert in g a node at the begi n n i n g :

The following steps are to be followed to inser t a new node at the
beginning of the list:

 Get the new node using getnode().

newnode = g e t n o d e();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

newnode -> right = star t ;
star t -> left = newnode;
star t = newnode;

The function dbl_inser t_beg(), is used for inser ting a node at the
beginning. Figure 6.4.4 shows inser ting a node into the double linked list
at the beginning.

4 0 0

4 0 0 1 0 2 0 0 2 0 0 3 0 X

1 0 0 2 0 0 3 0 0

s t a r t

Fi g ur e 6 . 4 . 4 . I n s er t i n g a n o d e a t t h e b e g i n n i n g

 1 0 0 2 0 3 0 0

 X 4 0 1 0 0

4 0 0

Insert in g a node at the end:

The following steps are followed to inser t a new node at the end of the
list:

 Get the new node using getnode()

78

newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:

temp = star t ;
while(tem p -> right != NULL)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

The function dbl_inser t_end(), is used for inser t ing a node at the end.
Figure 6.4.5 shows inser ting a node into the double linked list at the end.

1 0 0

X 1 0 2 0 0 2 0 0 3 0 4 0 0

1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 4 . 5 . I n s e r t i n g a n o d e a t t h e e n d

 1 0 0 2 0 3 0 0

3 0 0 4 0 X

4 0 0

Insert in g a node at an inter m e d i a t e posi t io n:

The following steps are followed, to insert a new node in an intermediate position in the list:

 Get the new node using getnode().

newnode = g e t n o d e();

 Ensure that the specified position is in between first node and
last node. If not, specified position is invalid. This is done by
countnode() function.

 Store the star ting addres s (which is in star t pointe r) in temp and

prev pointe r s . Then travers e the temp pointe r upto the specified
position followed by prev pointe r .

 After reaching the specified position, follow the steps given
below:

newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;

79

The function dbl_inser t_mid(), is used for inser ting a node in the
interme dia t e position. Figure 6.4.6 shows inser ting a node into the
double linked list at a specified interme dia t e position other than
beginning and end.

1 0 0

X 1 0 4 0 0
 4 0 0 2 0 3 0 0

1 0 0

4 0 0

2 0 0

st a r t

Fi g u r e 6 . 4 . 6 . I n s e r t i n g a n o d e a t a n i n t er m e d i a t e p o s it i o n

 1 0 0 4 0 2 0 0

2 0 0 3 0 X

3 0 0

Delet i n g a node at the begin n i n g :

The following steps are followed, to delete a node at the beginning of the
list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = star t ;
star t = star t -> right;
star t -> left = NULL;
free(tem p);

The function dbl_delete_beg(), is used for deleting the first node in the
list. Figure 6.4.6 shows deleting a node at the beginning of a double
linked list.

2 0 0

 X 1 0 2 0 0 2 0 0 3 0 X

1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 4 . 6 . De l e t i n g a n o d e a t b e g i n n i n g

 X 2 0 3 0 0

Delet i n g a node at the end:

The following steps are followed to delete a node at the end of the list:
 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below:

temp = star t ;

80

while(tem p -> right != NULL)
{

temp = temp -> right;
}
temp -> left -> right = NULL;
free(tem p);

The function dbl_delete_las t(), is used for deleting the last node in the
list. Figure 6.4.7 shows deleting a node at the end of a double linked list.

1 0 0

 X 1 0 2 0 0 2 0 0 3 0 X

1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 4 . 7 . De l e t i n g a n o d e a t t h e e n d

 1 0 0 2 0 X

Delet i n g a node at Inter m e d i a t e posi t io n:

The following steps are followed, to delete a node from an interm e dia t e
position in the list (List must contain more than two nodes).

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

 Get the position of the node to delete.

 Ensure that the specified position is in betwee n first node
and last node. If not, specified position is invalid.

 Then perform the following steps:

if(pos > 1 && pos < nodect r)
{

temp = star t ;
i = 1;
while(i < pos)
{

temp = temp -> right;
i+ +;

}
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(tem p);
printf("\n node deleted. .");

}

81

The function delete_at_mid(), is used for deleting the intermediate node in the list. Figure 6.4.8 shows
deleting a node at a specified intermediate position other than beginning and end from a double
linked list.

1 0 0

 X 1 0 3 0 0 1 0 0 3 0 X

1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 4 . 8 De l e t i n g a n o d e a t a n i n t e r m e d i a t e p o s it i o n

 1 0 0 2 0 3 0 0

Travers a l and displayin g a list (Left to Right):

To display the information, you have to traverse the list, node by node
from the first node, until the end of the list is reache d. The function
traverse_lef t_right () is used for traversing and displaying the information
stored in the list from left to right .

The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.
 If the list is not empty, follow the steps given below:

temp = star t ;
while(tem p != NULL)

 {
print temp -> data;
temp = temp -> right;

 }

Travers a l and displayin g a list (Right to Left):

To display the informa tion from right to left, you have to traverse the list,
node by node from the first node, until the end of the list is reached. The
function traverse_right_lef t () is used for traversing and displaying the
information stored in the list from right to left.

The following steps are followed, to traverse a list from right to left:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = star t ;
 while(tem p -> right != NULL)

 temp = temp -> right;
 while(tem p != NULL)

82

 {
print temp -> data;
temp = temp -> left;

 }

Countin g the Num b e r of Nod e s:

The following code will count the number of nodes exist in the list (using
recursion).

in t co u nt no d e(no d e * st a r t)
{
 if (st a r t = = N U LL)
 r e t u r n 0 ;
 e ls e
 r e t u r n(1 + co u nt no d e(st a r t - > r ig h t)) ;
}

6.5. A Complete Source Code for the Implementation of Double Linked List:

#include <s tdio.h >
#include <s tdlib.h >
#include <conio.h >

struct dlinklist
{

struct dlinklist *left;
int data;
struct dlinklist *right;

};

typedef struct dlinklist node;
node *star t = NULL;

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

}

int countnode(node *star t)
{

if(star t = = NULL)

83

return 0;
else

return 1 + countnode(s t a r t -> right);
}

int menu()
{

int ch;
clrscr();
printf("\n 1.Crea t e");
printf("\n- -----------------------------");
printf("\n 2. Inser t a node at beginning ");
printf("\n 3. Inser t a node at end");
printf("\n 4. Inser t a node at middle");
printf("\n- -----------------------------");
printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n- -----------------------------");
printf("\n 8. Traverse the list from Left to Right ");
printf("\n 9. Traverse the list from Right to Left ");

 printf("\n- -----------------------------");
printf("\n 10.Count the Number of nodes in the list");
printf("\n 11.Exit ");
printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void creat elis t(in t n)
{

int i;
node *newnode;
node *temp;
for(i = 0; i < n; i++)
{

newnode = getnode();
if(star t = = NULL)

star t = newnode;
else
{

temp = star t ;
while(temp -> right)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

}
}

}

void traverse_left_to_right()
{

node *temp;
temp = star t ;
printf("\n The conten ts of List: ");
if(star t = = NULL)

printf("\n Empty List");
else
while(temp != NULL)
{

printf("\t %d ", temp -> data);
temp = temp -> right;

}
}

void traverse_righ t_to_left()
{

84

node *temp;
temp = star t ;
printf("\n The conten ts of List: ");
if(star t = = NULL)

printf("\n Empty List");
else
while(temp -> right != NULL)

temp = temp -> right;
while(temp != NULL)
{

printf("\t%d", temp -> data);
temp = temp -> left;

}
}

void dll_inser t_beg()
{

node *newnode;
newnode = getnode();
if(star t = = NULL)

star t = newnode;
else
{

newnode -> right = star t;
star t -> left = newnode;
star t = newnode;

}
}

void dll_inser t_end()
{

node *newnode, *temp;
newnode = getnode();
if(star t = = NULL)

star t = newnode;
else
{

temp = star t ;
while(temp -> right != NULL)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

}
}

void dll_inser t_mid()
{

node *newnode,*tem p;
int pos, nodect r , ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodect r = countnode(s t a r t) ;
if(pos - nodec t r > = 2)
{

printf("\n Position is out of range. .");
return ;

}
if(pos > 1 && pos < nodect r)
{

temp = star t ;
while(ctr < pos - 1)
{

temp = temp -> right;
ctr+ + ;

}
newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;

85

temp -> right = newnode;
}
else

printf("posi tion %d of list is not a middle position ", pos);
}

void dll_delete_beg()
{

node *temp;
if(star t = = NULL)
{

printf("\n Empty list");
getch();
return ;

}
else
{

temp = star t ;
star t = star t -> right;
star t -> left = NULL;
free(temp);

}
}

void dll_delete_last()
{

node *temp;
if(star t = = NULL)
{

printf("\n Empty list");
getch();
return ;

}
else
{

temp = star t ;
while(temp -> right != NULL)

temp = temp -> right;
temp -> left -> right = NULL;
free(temp);
temp = NULL;

}
}

void dll_delete_mid()
{

int i = 0, pos, nodec t r ;
node *temp;
if(star t = = NULL)
{

printf("\n Empty List");
getch();
return ;

}
else
{

printf("\n Enter the position of the node to delete: ");
scanf("%d", &pos);
nodect r = countnode(s t a r t) ;
if(pos > nodec t r)
{

printf("\nthis node does not exist");
getch();
return ;

}
if(pos > 1 && pos < nodect r)
{

temp = star t ;
i = 1;

86

while(i < pos)
{

temp = temp -> right;
i++;

}
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted . .");

}
else
{

printf("\n It is not a middle position..");
getch();

}
}

}

void main(void)
{

int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :
printf("\n Enter Number of nodes to creat e: ");
scanf("%d", &n);
creat elis t(n);
printf("\n List crea ted . .");
break;

case 2 :
dll_inser t_beg();
break;

case 3 :
dll_inser t_end();
break;

case 4 :
dll_inser t_mid();
break;

case 5 :
dll_delet e_beg();
break;

case 6 :
dll_delet e_last();
break;

case 7 :
dll_delet e_mid();
break;

case 8 :
traverse_left_to_right();
break;

case 9 :
traverse_righ t_to_left();
break;

case 10 :
printf("\n Number of nodes: %d", countnode(s t a r t));
break;

case 11:
exit(0);

}
getch();

}
}

87

6.6. Circular Singl e Linked List:

It is just a single linked list in which the link field of the last node points
back to the addre ss of the first node. A circular linked list has no
beginning and no end. It is necess a ry to establish a special pointe r called
start pointe r always pointing to the first node of the list. Circula r linked
lists are frequen tly used instead of ordina ry linked list because many
opera t ions are much easier to implemen t . In circular linked list no null
pointe rs are used, hence all pointe r s contain valid address .

A circula r single linked list is shown in figure 6.6.1.

1 0 0

1 0 2 0 0 2 0 3 0 0 3 0 4 0 0 4 0 1 0 0

1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 6 . 1 . C ir c u l a r S i n g l e L i n k e d L i s t

The basic opera t ions in a circula r single linked list are:

 Creation.
 Inser tion.
 Deletion.
 Traversing.

Creat in g a circular sing l e Linked List with ‘n’ numb er of node s:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;

 If the list is not empty, follow the steps given below:

temp = star t ;
while(tem p -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

 Repea t the above steps ‘n’ times.

88

 newnode -> next = star t;

The function creat elis t(), is used to create ‘n’ number of nodes:

Insert in g a node at the begi n n i n g :

The following steps are to be followed to inser t a new node at the
beginning of the circula r list:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

star t = newnode;
newnode -> next = star t;

 If the list is not empty, follow the steps given below:

last = star t;
while(las t -> next != star t)

last = last -> next;
newnode -> next = star t;
star t = newnode;
last -> next = star t ;

The function cll_inser t_beg(), is used for inser ting a node at the
beginning. Figure 6.6.2 shows inser ting a node into the circula r single
linked list at the beginning.

5 0 0

1 0 2 0 0 2 0 3 0 0 3 0 4 0 0 4 0 5 0 0
1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 6 . 2 . I n s e r t i n g a n o d e a t t h e b e g i n n i n g

5 1 0 0

5 0 0

Insert in g a node at the end:

The following steps are followed to inser t a new node at the end of the
list:

 Get the new node using getnode().

newnode = getnode();

89

 If the list is empty, assign new node as start.

star t = newnode;
newnode -> next = star t;

 If the list is not empty follow the steps given below:
temp = star t ;
while(tem p -> next != star t)

temp = temp -> next;
temp -> next = newnode;
newnode -> next = star t;

The function cll_inser t_end(), is used for inser ting a node at the end.

Figure 6.6.3 shows inser ting a node into the circular single linked list at
the end.

1 0 0

1 0 2 0 0 2 0 3 0 0 3 0 4 0 0 4 0 5 0 0
1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 6 . 3 I n s e r t i n g a n o d e a t t h e e n d .

5 0 1 0 0

5 0 0

Delet i n g a node at the begin n i n g :

The following steps are followed, to delete a node at the beginning of the
list:

 If the list is empty, display a message ‘Empty List’.

 If the list is not empty, follow the steps given below:

last = temp = star t ;
while(las t -> next != star t)

last = last -> next;
star t = star t -> next;
last -> next = star t ;

 After deleting the node, if the list is empty then start = NULL.

The function cll_delete_beg(), is used for deleting the first node in the
list. Figure 6.6.4 shows deleting a node at the beginning of a circular

90

single linked list.

2 0 0

1 0 2 0 0 2 0 3 0 0 3 0 4 0 0 4 0 2 0 0
1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 6 . 4 . De l e t i n g a n o d e a t b e g i n n i n g .

t e m p

Delet i n g a node at the end:

The following steps are followed to delete a node at the end of the list:

 If the list is empty, display a message ‘Empty List’.

 If the list is not empty, follow the steps given below:

temp = star t ;
prev = star t ;
while(tem p -> next != star t)
{

prev = temp;
temp = temp -> next;

}
prev -> next = star t ;

 After deleting the node, if the list is empty then start = NULL.

 The function cll_delete_las t(), is used for deleting the last node in the
list.

Figure 6.6.5 shows deleting a node at the end of a circula r single linked
list.

1 0 0

1 0 2 0 0 2 0 3 0 0 3 0 1 0 0 4 0 1 0 0
1 0 0 2 0 0 3 0 0 4 0 0

s t a r t

Fi g u r e 6 . 6 . 5 . De l e t i n g a n o d e a t t h e e n d .

Travers in g a circular sing l e linked list from left to right:

The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.

91

 If the list is not empty, follow the steps given below:

temp = star t ;
do
{

printf("%d ", temp -> data);
temp = temp -> next;

} while(temp != star t);

6.7. A Complete Source Code for the Implementation of Circular Single
Linked List:

include <stdio.h >
include <conio.h >
include <stdlib.h >

struct cslinklist
{

int data;
struct cslinklist *next;

};

typedef struct cslinklist node;
node *star t = NULL;
int nodect r ;

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> next = NULL;
return newnode;

}

int menu()
{

int ch;
clrscr();
printf("\n 1. Crea te a list ");
printf("\n\n- -------------------------");
printf("\n 2. Inser t a node at beginning ");
printf("\n 3. Inser t a node at end");
printf("\n 4. Inser t a node at middle");
printf("\n\n- -------------------------");
printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n\n- -------------------------");
printf("\n 8. Display the list");
printf("\n 9. Exit");
printf("\n\n- -------------------------");
printf("\n Enter your choice: ");
scanf("%d", &ch);
return ch;

92

}

void creat elis t(in t n)
{

int i;
node *newnode;
node *temp;
nodect r = n;
for(i = 0; i < n ; i++)
{

newnode = getnode();
if(star t = = NULL)
{

star t = newnode;
}
else
{

temp = star t ;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

}
}
newnode ->next = star t; /* last node is pointing to star ting node */

}

void display()
{

node *temp;
temp = star t ;
printf("\n The conten ts of List (Left to Right): ");
if(star t = = NULL)

printf("\n Empty List");
else
do
{

printf("\t %d ", temp -> data);
temp = temp -> next;

}while(tem p != star t);
printf(" X ");

}

void cll_inser t_beg()
{

node *newnode, *last;
newnode = getnode();
if(star t = = NULL)
{

star t = newnode;
newnode -> next = star t ;

}
else
{

last = star t;
while(las t -> next != star t)

last = last -> next;
newnode -> next = star t ;
star t = newnode;
last -> next = star t;

}
printf("\n Node inser t ed at beginning. .");
nodect r + + ;

}

void cll_inser t_end()
{

node *newnode, *temp;
newnode = getnode();
if(star t = = NULL)

93

{
star t = newnode;
newnode -> next = star t ;

}
else
{

temp = star t ;
while(temp -> next != star t)

temp = temp -> next;
temp -> next = newnode;
newnode -> next = star t ;

}
printf("\n Node inser t ed at end..");
nodect r + + ;

}

void cll_inser t_mid()
{

node *newnode, *temp, *prev;
int i, pos ;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
if(pos > 1 && pos < nodect r)
{

temp = star t ;
prev = temp;
i = 1;
while(i < pos)
{

prev = temp;
temp = temp -> next;
i++;

}
prev -> next = newnode;
newnode -> next = temp;
nodect r + + ;
printf("\n Node inser t ed at middle..");

}
else
{

printf("posi tion %d of list is not a middle position ", pos);
}

}

void cll_delete_beg()
{

node *temp, *last;
if(star t = = NULL)
{

printf("\n No nodes exist..");
getch();
return ;

}
else
{

last = temp = star t ;
while(las t -> next != star t)

last = last -> next;
star t = star t -> next;
last -> next = star t;
free(temp);
nodect r- -;
printf("\n Node deleted . .");
if(nodec t r = = 0)

star t = NULL;
}

}

94

void cll_delete_last()
{

node *temp,*prev;
if(star t = = NULL)
{

printf("\n No nodes exist..");
getch();
return ;

}
else
{

temp = star t ;
prev = star t;
while(temp -> next != star t)
{

prev = temp;
temp = temp -> next;

}
prev -> next = star t;
free(temp);
nodect r- -;
if(nodec t r = = 0)

star t = NULL;
printf("\n Node deleted . .");

}
}

void cll_delete_mid()
{

int i = 0, pos;
node *temp, *prev;

if(star t = = NULL)
{

printf("\n No nodes exist..");
getch();
return ;

}
else
{

printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodec t r)
{

printf("\nThis node does not exist");
getch();
return ;

}
if(pos > 1 && pos < nodect r)
{

temp = s t a r t ;
prev = star t;
i = 0;
while(i < pos - 1)
{

prev = temp;
temp = temp -> next ;
i++;

}
prev -> next = temp -> next;
free(temp);
nodect r- -;
printf("\n Node Deleted. .");

}
else
{

printf("\n It is not a middle position..");
getch();

95

}
}

}

void main(void)
{

int resul t;
int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :
if(star t = = NULL)
{

printf("\n Enter Number of nodes to creat e: ");
scanf("%d", &n);
creat elis t(n);
printf("\nList creat ed . .");

}
else

printf("\n List is already Exist..");
break;

case 2 :
cll_inser t_beg();
break;

case 3 :
cll_inser t_end();
break;

case 4 :
cll_inser t_mid();
break;

case 5 :
cll_delete_beg();
break;

case 6 :
cll_delete_last();
break;

case 7 :
cll_delete_mid();
break;

case 8 :
display();
break;

case 9 :
exit(0);

}
getch();

}
}

Circular Double Linked List:

A circula r double linked list has both successor pointe r and predece sso r
pointe r in circular manne r . The objective behind considering circular
double linked list is to simplify the inser tion and deletion opera t ions
performe d on double linked list. In circular double linked list the right
link of the right most node points back to the start node and left link of
the first node points to the last node.

96

A circula r double linked list is shown in figure 6.8.1.

1 0 0

3 0 0 1 0 2 0 0 2 0 0 3 0 1 0 0

1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 8 . 1 . C ir c u l a r Do u b l e L i n k e d L i s t

 1 0 0 2 0 3 0 0

The basic opera t ions in a circula r double linked list are:

 Creation.
 Inser tion.
 Deletion.
 Traversing.

Creat in g a Circular Doubl e Linked List with ‘n’ nu mb e r of nod e s:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, then do the following

star t = newnode;
newnode -> left = star t ;
newnode ->righ t = star t ;

 If the list is not empty, follow the steps given below:

newnode -> left = star t -> left;
newnode -> right = star t ;
star t -> left- >righ t = newnode;
star t -> left = newnode;

 Repea t the above steps ‘n’ times.

The function cdll_crea t e lis t(), is used to create ‘n’ numbe r of nodes:

Insert in g a node at the begi n n i n g :

The following steps are to be followed to inser t a new node at the
beginning of the list:

 Get the new node using getnode().

97

newnode = g e t n o d e();

 If the list is empty, then

star t = newnode;
newnode -> left = star t ;
newnode -> right = star t ;

 If the list is not empty, follow the steps given below:

newnode -> left = star t -> left;
newnode -> right = star t ;
star t -> left -> right = newnode;
star t -> left = newnode;
star t = newnode;

The function cdll_inser t_beg(), is used for inser ting a node at the
beginning. Figure 6.8.2 shows inser ting a node into the circula r double
linked list at the beginning.

4 0 0

4 0 0 1 0 2 0 0 2 0 0 3 0 4 0 0
1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 8 . 2 . I n s e r t i n g a n o d e a t t h e b e g i n n i n g

 1 0 0 2 0 3 0 0

3 0 0 4 0 1 0 0

4 0 0

Insert in g a node at the end:

The following steps are followed to inser t a new node at the end of the
list:

 Get the new node using getnode()

newnode=getnode();

 If the list is empty, then

star t = newnode;
newnode -> left = star t ;
newnode -> right = star t ;

 If the list is not empty follow the steps given below:

newnode -> left = star t -> left;
newnode -> right = star t ;
star t -> left -> right = newnode;
star t -> left = newnode;

98

The function cdll_inser t_end(), is used for inser ting a node at the end.
Figure 6.8.3 shows inser ting a node into the circular linked list at the
end.

1 0 0

4 0 0 1 0 2 0 0 2 0 0 3 0 4 0 0
1 0 0 2 0 0 3 0 0

st a r t

Fi g u r e 6 . 8 . 3 . I n s e r t i n g a n o d e a t t h e e n d

 1 0 0 2 0 3 0 0

3 0 0 4 0 1 0 0

4 0 0

Insert in g a node at an inter m e d i a t e posi t io n:

The following steps are followed, to insert a new node in an intermediate position in the list:

 Get the new node using getnode().

newnode = g e t n o d e();

 Ensure that the specified position is in between first node and
last node. If not, specified position is invalid. This is done by
countnode() function.

 Store the star ting addres s (which is in star t pointe r) in temp and

prev pointe r s . Then travers e the temp pointe r upto the specified
position followed by prev pointe r .

 After reaching the specified position, follow the steps given
below:

newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;
nodec t r + + ;

The function cdll_insert_mid(), is used for inserting a node in the intermediate position. Figure 6.8.4
shows inserting a node into the circular double linked list at a specified intermediate position other
than beginning and end.

99

1 0 0

3 0 0 1 0 4 0 0 4 0 0 2 0 3 0 0
1 0 0

4 0 0

2 0 0

st a r t

Fi g ur e 6 . 8 . 4 . I n s er t i n g a n o d e a t a n i n t e r m e d i a t e p o s it i o n

 1 0 0 4 0 2 0 0

2 0 0 3 0 1 0 0

3 0 0

Delet i n g a node at the begin n i n g :

The following steps are followed, to delete a node at the beginning of the
list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = star t ;
star t = star t -> right;
temp -> left -> right = star t;
star t -> left = temp -> left;

The function cdll_delete_beg(), is used for deleting the first node in the
list. Figure 6.8.5 shows deleting a node at the beginning of a circular
double linked list.

2 0 0

3 0 0 1 0 2 0 0 2 0 0 3 0 2 0 0

1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 8 . 5 . De l e t i n g a n o d e a t b e g i n n i n g

 3 0 0 2 0 3 0 0

Delet i n g a node at the end:

The following steps are followed to delete a node at the end of the list:

 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below:

100

temp = star t ;
while(tem p -> right != star t)
{

temp = temp -> right;
}
temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;

The function cdll_delete_las t(), is used for deleting the last node in the
list. Figure 6.8.6 shows deleting a node at the end of a circular double
linked list.

1 0 0

2 0 0 1 0 2 0 0 2 0 0 3 0 1 0 0

1 0 0 2 0 0 3 0 0

st a r t

Fi g ur e 6 . 8 . 6 . De l e t i n g a n o d e a t t h e e n d

 1 0 0 2 0 1 0 0

Delet i n g a node at Inter m e d i a t e posi t io n:

The following steps are followed, to delete a node from an interm e dia t e
position in the list (List must contain more than two node).

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

 Get the position of the node to delete.

 Ensure that the specified position is in betwee n first node
and last node. If not, specified position is invalid.

 Then perform the following steps:

if(pos > 1 && pos < nodect r)
 {

temp = star t ;
i = 1;
while(i < pos)
{

temp = temp -> right ;
i+ +;

}
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(tem p);

101

printf("\n node deleted. .");
nodec t r- -;

 }

The function cdll_delete_mid(), is used for deleting the interm e dia t e node
in the list.
Figure 6.8.7 shows deleting a node at a specified intermediate position other than beginning and end
from a circular double linked list.

1 0 0

 3 0 0 1 0 3 0 0 1 0 0 3 0 1 0 0

1 0 0 2 0 0 3 0 0

s t a r t

Fi g u r e 6 . 8 . 7 . De l e t i n g a n o d e a t a n i n t e r m e d i a t e p o s it i o n

 1 0 0 2 0 3 0 0

Travers in g a circular doubl e link ed list from left to right:

The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = star t ;
Print temp -> data;
temp = temp -> right;
while(tem p != star t)
{

print temp -> data;
temp = temp -> right;

}

The function cdll_display_left _right(), is used for traversing from left to
right.

Travers in g a circular doubl e link ed list from right to left:

The following steps are followed, to traverse a list from right to left:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:
temp = star t ;
do
{

102

temp = temp -> left;
print temp -> data;

} while(temp != star t);

The function cdll_display_righ t_left(), is used for traversing from right to
left.

6.9. A Complete Source Code for the Implementation of Circular Double
Linked List:

include <stdio.h >
include <stdlib.h >
include <conio.h >

struct cdlinklist
{

struct cdlinklist *left;
int data;
struct cdlinklist *right;

};

typedef struct cdlinklist node;
node *star t = NULL;
int nodect r ;

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

}

int menu()
{

int ch;
clrscr();
printf("\n 1. Crea te ");
printf("\n\n- -------------------------");
printf("\n 2. Inser t a node at Beginning");
printf("\n 3. Inser t a node at End");
printf("\n 4. Inser t a node at Middle");
printf("\n\n- -------------------------");
printf("\n 5. Delete a node from Beginning");
printf("\n 6. Delete a node from End");
printf("\n 7. Delete a node from Middle");
printf("\n\n- -------------------------");
printf("\n 8. Display the list from Left to Right");
printf("\n 9. Display the list from Right to Left");
printf("\n 10.Exit");
printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void cdll_crea t elis t(int n)
{

int i;
node *newnode, *temp;
if(star t = = NULL)

103

{
nodect r = n;
for(i = 0; i < n; i++)
{

newnode = getnode();
if(star t = = NULL)
{

star t = newnode;
newnode -> left = star t;
newnode ->right = star t ;

}
else
{

newnode -> left = star t -> left;
newnode -> right = star t;
star t -> left- >right = newnode;
star t -> left = newnode;

}
}

}
else
{

printf("\n List already exists..");
}

}

void cdll_display_left_right()
{

node *temp;
temp = star t ;
if(star t = = NULL)

printf("\n Empty List");
else
{

printf("\n The conten ts of List: ");
printf(" %d ", temp -> data);
temp = temp -> right;
while(temp != star t)
{

printf(" %d ", temp -> data);
temp = temp -> right;

}
}

}

void cdll_display_right_left()
{

node *temp;
temp = star t ;
if(star t = = NULL)

printf("\n Empty List");
else
{

printf("\n The conten ts of List: ");
do
{

temp = temp -> left;
printf("\t%d", temp -> data);

}while(tem p != star t);
}

}

void cdll_inser t_beg()
{

node *newnode;
newnode = getnode();
nodect r + + ;
if(star t = = NULL)
{

104

star t = newnode;
newnode -> left = star t;
newnode -> right = star t;

}
else
{

newnode -> left = star t -> left;
newnode -> right = star t;
star t -> left -> right = newnode;
star t -> left = newnode;
star t = newnode;

}
}

void cdll_inser t_end()
{

node *newnode,*tem p;
newnode = getnode();
nodect r + + ;
if(star t = = NULL)
{

star t = newnode;
newnode -> left = star t;
newnode -> right = star t;

}
else
{

newnode -> left = star t -> left;
newnode -> right = star t;
star t -> left -> right = newnode;
star t -> left = newnode;

}
printf("\n Node Inser ted at End");

}

void cdll_inser t_mid()
{

node *newnode, *temp, *prev;
int pos, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
if(pos - nodec t r > = 2)
{

printf("\n Position is out of range. .");
return ;

}
if(pos > 1 && pos < = nodec t r)
{

temp = star t ;
while(ctr < pos - 1)
{

temp = temp -> right;
ctr+ + ;

}
newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;
nodect r + + ;
printf("\n Node Inser ted at Middle.. ");

}
else
{

printf("posi tion %d of list is not a middle position", pos);

}
}

105

void cdll_delete_beg()
{

node *temp;
if(star t = = NULL)
{

printf("\n No nodes exist..");
getch();
return ;

}
else
{

nodect r- -;
if(nodec t r = = 0)
{

free(sta r t);
star t = NULL;

}
else
{

temp = star t ;
star t = star t -> right;
temp -> left -> right = star t ;
star t -> left = temp -> left;
free(temp);

}
printf("\n Node deleted at Beginning..");

}
}

void cdll_delete_last()
{

node *temp;
if(star t = = NULL)
{

printf("\n No nodes exist..");
getch();
return ;

}
else
{

nodect r- -;
if(nodec t r = = 0)
{

free(sta r t);
star t = NULL;

}
else
{

temp = star t ;
while(temp -> right != star t)

temp = temp -> right;
temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;
free(temp);

}
printf("\n Node deleted from end ");

}
}

void cdll_delete_mid()
{

int ctr = 1, pos;
node *temp;
if(star t = = NULL)
{

printf("\n No nodes exist..");
getch();
return ;

}

106

else
{

printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodec t r)
{

printf("\nThis node does not exist");
getch();
return ;

}
if(pos > 1 && pos < nodect r)
{

temp = star t ;
while(ctr < pos)
{

temp = temp -> right ;
ctr+ + ;

}
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted . .");
nodect r- -;

}
else
{

printf("\n It is not a middle position..");
getch();

}
}

}

void main(void)
{

int ch,n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :
printf("\n Enter Number of nodes to creat e: ");
scanf("%d", &n);
cdll_crea t elis t(n);
printf("\n List crea ted . .");
break;

case 2 :
cdll_inser t_beg();
break;

case 3 :
cdll_inser t_end();
break;

case 4 :
cdll_inser t_mid();
break;

case 5 :
cdll_delete_beg();
break;

case 6 :
cdll_delete_last();
break;

case 7 :
cdll_delete_mid();
break;

case 8 :
cdll_display_left_right();
break;

case 9 :

107

cdll_display_right_left();
break;

case 10:
exit(0);

}
getch();

}
}

6.9. Linked List Imple m e n t a t i o n of Stack:

We can repres e n t a stack as a linked list. In a stack push and pop
opera t ions are performe d at one end called top. We can perform similar
opera t ions at one end of list using top pointe r . The linked stack looks as
shown in figure 6.9.1:

t o p

d a t a n e xt

4 0

3 0

2 0

1 0

s t a r t

1 0 0

2 0 0

3 0 0

4 0 0

1 0 0

3 0 0

2 0 0

4 0 0

X

4 0 0

Fi g u r e 6 . 9 . 1 . L i n k e d s t ac k
re p r e s e n t a t i o n

The progra m for linked list imple m e n t a t i o n of stack:

include <stdio.h >
include <conio.h >
include <stdlib.h >

struct stack
{

int data;
struct stack *next;

};

void push();
void pop();
void display();
typedef struct stack node;
node *star t = N ULL;
node *top = NULL;

node* getnode()
{

struct stack *temp;
temp =(nod e *) malloc(sizeof(node)) ;
printf("\n Enter data ");

108

scanf("%d", &temp -> data);
temp -> next = NULL;
return temp;

}

void push(node *newnode)
{

node *temp;
if(newnode = = NULL)
{

printf("\n Stack Overflow..");
return ;

}
if(star t = = NULL)
{

star t = newnode;
top = newnode;

}
else
{

temp = star t ;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;
top = newnode;

}
printf("\n\n\t Data pushed into stack");

}

void pop()
{

node *temp;
if(top = = NULL)
{

printf("\n\n\t Stack underflow");
return ;

}
temp = star t ;
if(star t -> next = = NULL)
{

printf("\n\n\t Popped element is %d ", top -> data);
star t = NULL;
free(top);
top = NULL;

}
else
{

while(temp -> next != top)
{

temp = temp -> next;
}
temp -> next = NULL;
printf("\n\n\t Popped element is %d ", top -> data);
free(top);
top = temp;

}
}

void display()
{

node *temp;
if(top = = NULL)
{

printf("\n\n\t\ t Stack is empty ");
}
else
{

temp = star t ;
printf("\n\n\n\ t\ t Elemen ts in the stack: \n");

109

printf("%5d ", temp -> data);
while(temp != top)
{

temp = temp -> next;
printf("%5d ", temp -> data);

}
}

}

char menu()
{

char ch;
clrscr();
printf("\n \tStack opera tions using pointe rs . . ");
printf("\n -----------**********-------------\n");
printf("\n 1. Push ");
printf("\n 2. Pop ");
printf("\n 3. Display");
printf("\n 4. Quit ");
printf("\n Enter your choice: ");
ch = getche();
return ch;

}

void main()
{

char ch;
node *newnode;
do
{

ch = menu();
switch(ch)
{

case '1' :
newnode = getnode();
push(newnod e);
break;

case '2' :
pop();
break;

case '3' :
display();
break;

case '4':
return ;

}
getch();

}while(ch != '4');
}

6.10 . Linked List Imple m e n t a t i o n of Queu e:

We can repres e n t a queue as a linked list. In a queue data is deleted
from the front end and inser ted at the rear end. We can perform similar
opera t ions on the two ends of a list. We use two pointe r s front and rear
for our linked queue implemen t a t ion .

The linked queue looks as shown in figure 6.10.1:

110

1 0 0

1 0 2 0 0 2 0 3 0 0 3 0 4 0 0 4 0 X

1 0 0 2 0 0 3 0 0 4 0 0

f r o n t

Fi g u r e 6 . 1 0 . 1 . L i n k e d Q u e u e r e p r e s e n t a t i o n

r e a r

4 0 0

The progra m for linked list imple m e n t a t i o n of queu e:

include <stdio.h >
include <stdlib.h >
include <conio.h >

struct queue
{

int data;
struct queue *next;

};

typedef struct queue node;
node *front = NULL;
node *rear = NULL;

node* getnode()
{

node *temp;
temp = (node *) malloc(sizeof(node)) ;
printf("\n Enter data ");
scanf("%d", &temp -> data);
temp -> next = NULL;
return temp;

}

void inser tQ()
{

node *newnode;
newnode = getnode();
if(newnode = = NULL)
{

printf("\n Queue Full");
return ;

}
if(front = = NULL)
{

front = newnode;
rear = newnode;

}
else
{

rear -> next = newnode;
rear = newnode;

}
printf("\n\n\t Data Inser t ed into the Queue. .");

}

void deleteQ()
{

node *temp;
if(front = = NULL)
{

printf("\n\n\t Empty Queue. .");
return ;

111

}
temp = front;
front = front -> next;
printf("\n\n\t Deleted elemen t from queue is %d ", temp -> data);
free(temp);

}

void displayQ()
{

node *temp;
if(front = = NULL)
{

printf("\n\n\t\ t Empty Queue ");
}
else
{

temp = front;
printf("\n\n\n\ t\ t Elemen ts in the Queue are: ");
while(temp != NULL)
{

printf("%5d ", temp -> data);
temp = temp -> next;

}
}

}

char menu()
{

char ch;
clrscr();
printf("\n \t..Queue opera tions using pointe rs . . ");
printf("\n\t -----------**********-------------\n");
printf("\n 1. Inser t ");
printf("\n 2. Delete ");
printf("\n 3. Display");
printf("\n 4. Quit ");
printf("\n Enter your choice: ");
ch = getche();
return ch;

}

void main()
{

char ch;
do
{

ch = menu();
switch(ch)
{

case '1' :
inser tQ();
break;

case '2' :
deleteQ();
break;

case '3' :
displayQ();
break;

case '4':
return ;

}
getch();

} while(ch != '4');
}

112

113

Unit

 4 Trees

A data structu r e is said to be linear if its elemen t s form a sequence or a
linear list. Previous linear data structu r e s that we have studied like
arrays, stacks, queues and linked lists organize data in linear order .

Some data organizat ions require categorizing data into groups/sub-
groups. A data structu r e is said to be non linear if its element s form a
hiera rchical classification where, d ata items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and graph structures represents
hierarchial relationship between individual data elements. Graphs are nothing but trees with certain
restrictions removed.

7.1. TREES:

A tree t is a finite non-empty set of elements. One of these elements is called the root, and the
remaining elements (if any) are partitioned into trees, which are called the subtrees of t. A node
without a parent is called the root node (or root). Nodes with no children are called leaf nodes.

r 2 r 1

r

r n

T 1

.

.

T n T 2

F i g u r e 7 . 1 . 1 . R e c u r s i v e s t r u c t u r e o f t r e e a n d m - a r y t r e e

6 7 8 9 1 0 1 1

2 3 4 5

1

In the figure 7.1.1, r is a root node and T1, T2,..., Tn are trees with roots r1, r2,..., rn, respectively, then
we can construct a new tree whose root is r and T1, T2,..., Tn are the subtrees of the root. The nodes
r1, r2,..., rn are called the children of r.

In a tree data structure, there is no distinction between the various children of a node i.e., none is the
"first child" or "last child". A tree in which such distinctions are made is called an ordered tree, and
data structures built on them are called ordered tree data structures. Ordered trees are by far the
commonest form of tree data structure.

A special kind of tree called binary tree is easy to maintain in the computer.

7.2. BINARY TREE:

A binary tree is a tree in which each node can have at most two children.

A binary tree is either empty or consists of a node called the root together with two binary trees
called the left subtree and the right subtree.

A tree with no nodes is called as a null tree. A binary tree is shown in figure 7. 2.

114

A

C B

F E G D

I H

Fi g ur e 7 . 2 . 1 . Bi n a ry T r e e

r i g ht c h i l d l e f t c h i l d

r i g ht s u bt r e e
l e f t s u b t r e e

Tree Terminology:

Leaf node:

A node with no children is called a leaf (or external node). A node which is not a leaf is called
an internal node.

Path
A sequence of nodes n1, n2, . . ., nk, such that ni is the parent of ni + 1 for i = 1, 2,. . ., k - 1. The
length of a path is 1 less than the number of nodes on the path. Thus there is a path of length
zero from a node to itself.

For the tree shown in figure 7.2.1, the path between A and I is A, B, D, I.

Siblings

The children of the same parent are called siblings.

For the tree shown in figure 7.2.1, F and G are the siblings of the parent node B and H and I
are the siblings of the parent node D.

Ances t or and Desc e n d e n t

If there is a path from node A to node B, then A is called an
ances to r of B and

B is called a descendent of A.

Subtree

Any node of a tree, with all of its descend a n t s is a subtre e .

Level
The level of the node refers to its distance from the root. The root of the tree has level O, and
the level of any other node in the tree is one more than the level of its parent. For example, in
the binary tree of Figure 7.2.1 node F is at level 2 and node H is at level 3.

The maximum number of nodes at any level is 2n.

Height

The maximum level in a tree determines its height. The height of a node in a tree is the length
of a longest path from the node to a leaf. The term depth is also used to denote height of the
tree. The height of the tree of Figure 7.2.1 is 3.

Assigning level numbers and Numbering of nodes for a binary tree:

The nodes of a binary tree can be numbered in a natural way, level by level, left to right. The
nodes of an complete binary tree can be numbered so that the root is assigned the number 1,

115

a left child is assigned twice the number assigned its parent, and a right child is assigned one
more than twice the number assigned its parent. For example, see Figure 7.2.2.

1

3 2

6 5 7 4

9 8

Figure 7.2.2. Level by level number ing of binary tree

Level 0

Level 1

Level 2

Level 3

Properties of binary trees:

Some of the important properties of a binary tree are as follows:

1. If h = height of a binary tree, then

a. Maximum number of leaves = 2h

b. Maximum number of nodes = 2h + 1 - 1

2. If a binary tree contains m nodes at level l, it contains at most 2m nodes at level l + 1.

3. Since a binary tree can contain at most one node at level 0 (the root), it can contain at most 2 l

node at level l.

4. The total number of edges in a full binary tree with n node is n - 1.

Strictly Binary tree:

If every non-leaf node in a binary tree has nonempty left and right subtrees, the tree is termed
a strictly binary tree. Thus the tree of figure 7.2.3(a) is strictly binary. A strictly binary tree with
n leaves always contains 2n - 1 nodes.

Full Binary tree:

A full binary tree of height h has all its leaves at level h. Alternatively; All non leaf nodes of a full
binary tree have two children, and the leaf nodes have no children.

A full binary tree with height h has 2h + 1 - 1 nodes. A full binary tree of height h is a strictly
binary tree all of whose leaves are at level h. Figure 7.2.3(d) illustrates the full binary tree
containing 15 nodes and of height 3.

A full binary tree of height h contains 2h leaves and, 2h - 1 non-leaf nodes.

Thus by induction, total number of nodes (122) 1

0

h
h

l

ltn .

For example, a full binary tree of height 3 contains 23+1 – 1 = 15 nodes.

116

1

1

8

1

1 2

6

2

2

2 3

7

1 3

3

3

4 5

5 4 6 7

Fi g u r e 7 . 2 . 3 . Ex a m p l e s o f b i n a ry t r e e s

Fu l l b i n a ry t r e e

St r ic t Bi n a ry T r e e

6 7

9 St r ic t ly Co m p l e t e
b i n a ry t r e e

1

8

2 3

4 5 6 7

Co m p l e t e b i n a ry t r e e

9 8 1 1 1 0 1 3 1 2 1 4 1 5

(a)

(c) (d)

(b)

9 1 0

Complete Binary tree:

A binary tree with n nodes is said to be complete if it contains all the first n nodes of the
above numbering scheme. Figure 7.2.4 shows examples of complete and incomplete binary
trees.

A complet e binary tree of height h looks like a full binary tree down
to level h-1, and the level h is filled from left to right.

A complete binary tree with n leaves that is not strictly binary has 2n nodes. For example, the
tree of Figure 7.2.3(c) is a complete binary tree having 5 leaves and 10 nodes.

1

3

6

1

2

4

2

5 4

2 3

5 4 7

Fi g u r e 7 . 2 . 4 . Ex a m p l e s o f c o m p l e t e a n d i nc o m p l e t e b i n a ry t r e e s

1

Co m p l e t e Bi n a ry T r e e
b u t n o t st r ic t

No t Co m p l e t e a n d
n o t s t r ic t

No t Co m p l e t e a n d
n o t st r ic t

(c) (b) (a)

Binary Search Tree:

A binary search tree is a binary tree. It may be empty. If it is not empty then it satisfies the following
properties:

1. Every element has a key and no two elements have the same key.
2. The keys in the left subtree are smaller than the key in the root.

3. The keys in the right subtree are larger than the key in the root.

117

4. The left and right subtrees are also binary search trees.

Figure 7.2.5(a) is a binary search tree, whereas figure 7.2.5(b) is not a binary search tree.

1 6

2 0

1 9

1 2

1 1

1 2

1 4

1 3 1 3

2 0

1 4 1 1

1 7

Fi g u r e 7 . 2 . 5 . Ex a m p l e s o f b i n a r y s e a r c h t r e e s

1 6

B i n a r y S e a r c h T r e e

(b) (a)

1 7 1 9

N o t a B i n a r y S e a r c h T r e e

Data Structures for Binary Trees:

1. Arrays; especially suited for complete and full binary trees.

2. Pointer-based.

Array-based Implementation:

Binary trees can also be stored in arrays, and if the tree is a complete binary tree, this method wastes
no space. In this compact arrangement, if a node has an index i, its children are found at indices 2i+1
and 2i+2, while its parent (if any) is found at index floor((i-1)/2) (assuming the root of the tree stored in
the array at an index zero).

This method benefits from more compact storage and better locality of reference, particularly during a
preorder traversal. However, it requires contiguous memory, expensive to grow and wastes space
proportional to 2h - n for a tree of height h with n nodes.

 0 1 2 3 4 5 6

Linked Repre s e n t a t i o n (Point er bas ed):

Array representation is good for complete binary tree, but it is wasteful for many other binary trees.
The representation suffers from insertion and deletion of node from the middle of the tree, as it
requires the moment of potentially many nodes to reflect the change in level number of this node. To
overcome this difficulty we represent the binary tree in linked representation.
In linked repres en t a t ion each node in a binary has three fields, the left
child field denoted as LeftChild , data field denoted as data and the right
child field denoted as RightChild . If any sub- tree is empty then the
corresponding pointe r’s LeftChild and RightChild will store a NULL
value. If the tree itself is empty the root pointer will store a NULL value.

The advantag e of using linked repre se n t a t ion of binary tree is that:

118

 Inser tion and deletion involve no data movemen t and no
movemen t of nodes except the rear r a n g e m e n t of pointe r s .

The disadvan ta g e s of linked repre se n t a t ion of binary tree includes:

 Given a node struc tu r e , it is difficult to dete rmine its paren t
node.

 Memory spaces are wasted for storing NULL pointer s for the
nodes, which have no subt ree s .

The structu r e definition, node repres en t a t ion empty binary tree is shown
in figure 7.2.6 and the linked repres e n t a t ion of binary tree using this
node structu r e is given in figure 7.2.7.

 NULL

r o o t

Fi g u r e 7 . 2 . 6 . St r uc t u r e d ef i n it i o n , n o d e r e p r e s e n t a t i o n a n d e m p t y t r e e

E m p t y T r e e :

st r uct b in a r y t r e e
{

st r uct b in a r y t r e e * Lef t C h i ld ;
in t d at a;
st r uct b in a r y t r e e * Rig h t C h i ld ;

} ;

t y p e d ef st r uct b in a r y t r e e no d e;

 no d e * ro o t = N U LL;

Le f t Ch i l d d a t a Ri g h t Ch i l d

n o d e :

G F

A

C B

E D

I H

ro o t

A

B

D

C

G

H

F E

I

Fi g u r e 7 . 2 . 7 . L i n k e d r e p r e s e n t a t i o n f o r t h e b i n a ry t r e e

X X X

X X X X

X X X

7.3. BINARY TREE TRAVERSAL TECHNIQUES:

Search means finding a path or travers al betwee n a star t node and one
of a set of goal nodes . Search involves visiting nodes in a graph in a
systema t ic manne r , and may or may not resul t into a visit to all nodes.

119

When the search necessa r ily involved the examina tion of every vertex in
the tree, it is called the travers a l.
There are four common ways to traverse a binary tree:

1. Preorde r
2. Inorde r
3. Postorde r
4. Level order

In the first three traversa l methods , the left subtree of a node is
travers ed before the right subtree . The difference among them comes
from the difference in the time at which a root node is visited.

Inorder Travers a l:

In the case of inorder traversal, the root of each subtree is visited after its left subtree has been
traversed but before the traversal of its right subtree begins. The steps for traversing a binary tree in
inorder traversal are:

1. Visit the left subtree , using inorde r .
2. Visit the root.
3. Visit the right subtre e , using inorder .

The algorithm for inorder traversa l is as follows:

void inorder(node *root)
{

if(root != NULL)
{

inorder(roo t- >lchild);
print root -> data;
inorder(roo t- >rchild);

}
}

Preord er Travers a l:

In a preorder traversal, each root node is visited before its left and right subtrees are traversed.
Preorder search is also called backtracking. The steps for traversing a binary tree in preorder
traversal are:

1. Visit the root.
2. Visit the left subtree , using preorde r .
3. Visit the right subtre e , using preorde r .

The algorithm for preorde r travers a l is as follows:

void preorde r (node *root)
{

if(root != NULL)
{

120

print root -> data;
preorde r (root -> lchild);
preorde r (root -> rchild);

}
}

Postord er Travers a l:

In a postorde r travers al , each root is visited after its left and right
subtree s have been traverse d . The steps for traversing a binary tree in
postorde r travers a l are:

1. Visit the left subtree , using postorde r .
2. Visit the right subtre e , using postorde r
3. Visit the root.

The algorithm for postorde r traversa l is as follows:

void postorde r(node *root)
{

if(root != NULL)
{

postorde r (root -> lchild);
postorde r (root -> rchild);
print (root -> data);

}
}

Level order Traversa l:

In a level order traversal elements are visited by level from top to bottom. Within levels, elements are
visited from left to right. The level order traversal requires a queue data structure. So, it is not possible
to develop a recursive procedure to traverse the binary tree in level order. This is nothing but a
breadth first search technique.

The algorithm for level order traversa l is as follows:

void levelorde r()
{

int j;
for(j = 0; j < ctr; j++)
{

if(tree[j] != NULL)
print tree[j] -> data;

}
}

121

Exampl e 1:

Traverse the following binary tree in pre, post, inorder and level order.

A

B

D

C

E F

G H I

� Pr eo r d e r t r a v e rs a l y ie lds:
 A, B, D, C, E, G, F, H, I

� Po st o r d e r t r a v e rsa l y ie lds:
 D, B, G, E, H, I , F, C, A

� I n o r d e r t r a v e rs a l y ie lds:
 D, B, A, E, G, C, H, F, I

� Le v e l o r d e r t r a v e rs a l y ie lds:
 A, B, C, D, E, F, G, H, I

Bi n a ry T r e e Pr e, Po st , I n or d er a n d l ev e l or d er T r av er s i n g

Exampl e 2:

Traverse the following binary tree in pre, post, inorder and level order.

P

F

H B Y

G

R

S

� Pr eo r d e r t r a v e rs a l y ie lds:
 P, F, B, H , G , S , R, Y, T, W , Z

� Po st o r d e r t r a v e rs a l y ie lds:
 B , G , H , F, R, W , T, Z , Y, S , P

� I n o r d e r t r a v e rs a l y ie lds:
 B, F, G , H , P, R, S , T, W , Y, Z

� Le v e l o r d e r t r a v e rs a l y ie lds:
 P, F, S , B , H , R, Y, G , T, Z , W

Bi n a ry T r e e Pr e , Po st , I n or d er a n d l ev e l o r d er T r av er s i n g

Z T

W

Exampl e 3:

Traverse the following binary tree in pre, post, inorder and level order.

2

7

6 2 9

5

5

� Pr eo r d e r t r a v e rs a l y ie lds:
 2 , 7 , 2 , 6 , 5 , 1 1 , 5 , 9 , 4

� Po st o r d e r t r a v a rs a l y ie lds:
 2 , 5 , 1 1 , 6 , 7 , 4 , 9 , 5 , 2

� I n o r d e r t r a v a rs a l y ie lds:
 2 , 7 , 5 , 6 , 1 1 , 2 , 5 , 4 , 9

� Le v e l o r d e r t r a v e rs a l y ie lds:
 2 , 7 , 5 , 2 , 6 , 9 , 5 , 1 1 , 4

Bi n a ry T r e e Pr e , Po st , I n o r d e r a n d l ev e l o r d e r T r av e r s i n g

4 1 1

Exampl e 4:

Traverse the following binary tree in pre, post, inorder and level order.

122

A

B

K L

E

G

C

� Pr eo r d e r t r a v e rs a l y ie lds:
 A , B , D , G , K , H , L , M , C , E

� Po st o r d e r t r a v a rs a l y ie lds:
 K , G , L , M , H , D , B , E, C , A

� I n o r d e r t r a v a rs a l y ie lds:
 K , G , D , L , H , M , B , A , E, C

� Le v e l o r d e r t r a v e rs a l y ie lds:
 A , B , C , D , E, G , H , K , L , M

Bi n a ry T r e e Pr e , Po st , I n o r d e r a n d l ev e l o r d e r T r av e r s i n g

D

H

M

Format i o n of Binary Tree from its Travers a l:

Sometimes it is required to const ruc t a binary tree if its travers a ls are
known. From a single travers al it is not possible to const ruc t unique
binary tree. However if two are travers al s then correspon ding tree can
be drawn uniquely. The basic principle for formulat ion is as follows:
If the preorde r travers al is given, then the first node is the root node. If
the postorde r traversa l is given then the last node is the root node. Once
the root node is identified, all the nodes in the left sub- trees and right
sub- trees of the root node can be identified.

Same technique can be applied repea t e dly to form sub- trees .

It can be noted that, for the purpose mentioned, two traversa l are
essential out of which one should be inorder travers a l and anothe r
preorde r or postorde r ; alterna t ively, given preorde r and postorde r
travers a ls , binary tree cannot be obtained uniquely.

Exampl e 1:

Construc t a binary tree from a given preorde r and inorder sequence :

Preorder: A B D G C E H I F
Inorder: D G B A H E I C F

Solution:

From Preorder sequence A B D G C E H I F , the root is: A

From Inorder sequenc e D G B A H E I C F , we get the left and right sub
trees:

Left sub tree is: D G B

Right sub tree is: H E I C F

The Binary tree upto this point looks like:

123

A

H E I C F D G B

To find the root, left and right sub trees for D G B:

From the preorder sequence B D G, the root of tree is: B

From the inorder sequence D G B, we can find that D and G are to the
left of B.

The Binary tree upto this point looks like:

A

H E I C F

D G

B

To find the root, left and right sub trees for D G:

From the preorder sequence D G, the root of the tree is: D

From the inorder sequence D G , we can find that there is no left node to
D and G is at the right of D.
The Binary tree upto this point looks like:

A

H E I C F

D

B

G

To find the root, left and right sub trees for H E I C F:

From the preorder sequence C E H I F, the root of the left sub tree is: C

From the inorder sequence H E I C F , we can find that H E I are at the
left of C and F is at the right of C.

The Binary tree upto this point looks like:

124

A

H E I D

B

G

F

C

To find the root, left and right sub trees for H E I:

From the preorder sequence E H I, the root of the tree is: E

From the inorder sequence H E I, we can find that H is at the left of E
and I is at the right of E.

The Binary tree upto this point looks like:

125

A

D

B

G

F E

H

C

I

Example 2:

Construc t a binary tree from a given postorde r and inorder sequence :

Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9
Postorder: n1 n3 n5 n4 n2 n8 n7 n9 n6

Solution:

From Postorder sequenc e n1 n3 n5 n4 n2 n8 n7 n9 n6 , the root is: n6

From Inorder sequenc e n1 n2 n3 n4 n5 n6 n7 n8 n9 , we get the left and
right sub trees:

Left sub tree is: n1 n2 n3 n4 n5
Right sub tree is: n7 n8 n9

The Binary tree upto this point looks like:

n6

n7 n8 n9 n1 n2 n3 n4 n5

To find the root, left and right sub trees for n1 n2 n3 n4 n5 :

From the postorder sequence n1 n3 n5 n4 n2, the root of tree is: n2

From the inorder sequence n1 n2 n3 n4 n5 , we can find that n1 is to the
left of n2 and n3 n4 n5 are to the right of n2.

The Binary tree upto this point looks like:

137

n6

n7 n8 n9

n3 n4 n5

n2

n1

To find the root, left and right sub trees for n3 n4 n5:

From the postorder sequence n3 n5 n4, the root of the tree is: n4

From the inorder sequence n3 n4 n5 , we can find that n3 is to the left of
n4 and n5 is to the right of n4.

The Binary tree upto this point looks like:

n6

n7 n8 n9 n2

n1 n4

n5 n3

To find the root, left and right sub trees for n7 n8 and n9:

From the postorder sequence n8 n7 n9, the root of the left sub tree is: n9

From the inorder sequence n7 n8 n9 , we can find that n7 and n8 are to
the left of n9 and no right subtree for n9.

The Binary tree upto this point looks like:

n6

n7 n8

n2

n1 n4

n5 n3

n9

To find the root, left and right sub trees for n7 and n8:

From the postorder sequence n8 n7, the root of the tree is: n7

From the inorder sequence n7 n8 , we can find that there is no left
subtree for n7 and n8 is to the right of n7.

138

The Binary tree upto this point looks like:

n6

n2

n1 n4

n5 n3

n9

n8

n7

Binary Tree Creation and Traversal Using Arrays:

This progra m performs the following opera t ions:

1. Crea te s a comple te Binary Tree
2. Inorde r traversal
3. Preorde r traversal
4. Postorde r traversal
5. Level order traversal
6. Prints leaf nodes
7. Finds height of the tree creat ed

include <stdio.h >
include <stdlib.h >

struct tree
{

struct tree* lchild;
char data[10];
struct tree* rchild;

};

typedef struct tree node;
int ctr;
node *tree[100];

node* getnode()
{

node *temp ;
temp = (node*) malloc(sizeof(node));
printf("\n Enter Data: ");
scanf("%s",temp- >dat a);
temp- >lchild = NULL;
temp- >rchild = NULL;
return temp;

}

void creat e_fbina ry t r e e()
{

int j, i=0;
printf("\n How many nodes you want: ");
scanf("%d",&ct r);
tree[0] = getnode();
j = ctr;
j--;
do
{

if(j > 0) /* left child */

139

{
tree[i * 2 + 1] = getnode();
tree[i]- >lchild = tree[i * 2 + 1];
j--;

}
if(j > 0) /* right child */
{

tree[i * 2 + 2] = getnode();
j--;
tree[i]- >rchild = tree[i * 2 + 2];

}
i++;

} while(j > 0);
}

void inorder(node *root)
{

if(root != NULL)
{

inorder(root- >lchild);
printf("%3s",root- >da ta);
inorder(root- >rchild);

}
}

void preorde r (nod e *root)
{

if(root != NULL)
{

printf("%3s",root- >da ta);
preorde r (roo t- >lchild);
preorde r (roo t- >rchild);

}
}

void postorde r (nod e *root)
{

if(root != NULL)
{

postorde r (roo t- >lchild);
postorde r (roo t- >rchild);
printf("%3s",root- >da ta);

}
}
void levelorde r ()
{

int j;
for(j = 0; j < ctr; j++)
{

if(tree[j] != NULL)
printf("%3s",t r ee[j]- >da ta);

}
}

void print_leaf(node *root)
{

if(root != NULL)
{

if(root- >lchild = = NULL && root- >rchild = = NULL)
 printf("%3s ",root- >da t a) ;
 print_leaf(root- >lchild);
 print_leaf(root- >rchild);

}
}

int height(node *root)
{

if(root = = NULL)
{

140

return 0;
}
if(root- >lchild = = NULL && root- >rchild = = NULL)

return 0;
else

return (1 + max(heigh t(root- >lchild), height(root- >rchild)));
}

void main()
{

int i;
creat e_fbina ry t r e e();
printf("\n Inorde r Traversal: ");
inorder(t r ee[0]);
printf("\n Preorde r Traversal: ");
preorde r (t r e e[0]);
printf("\n Postorde r Traversal : ");
postorde r (t r e e[0]);
printf("\n Level Order Traversal: ");
levelorde r ();
printf("\n Leaf Nodes: ");
print_leaf(t ree[0]);
printf("\n Height of Tree: %d ", height(t r ee[0]));

}

Binary Tree Creation and Traversal Using Pointers:

This progra m performs the following opera t ions:

1. Crea te s a comple te Binary Tree
2. Inorde r traversal
3. Preorde r traversal
4. Postorde r traversal
5. Level order traversal
6. Prints leaf nodes
7. Finds height of the tree creat ed
8. Deletes last node
9. Finds height of the tree creat ed

include <stdio.h >
include <stdlib.h >

struct tree
{

struct tree* lchild;
char data[10];
struct tree* rchild;

};

typedef struct tree node;
node *Q[50];
int node_ct r;

node* getnode(void)
{

node *temp ;
temp = (node*) malloc(sizeof(node));
printf("\n Enter Data: ");
fflush(stdin);
scanf("%s",temp- >dat a);
temp- >lchild = NULL;
temp- >rchild = NULL;
return temp;

}

void creat e_bina ry t r e e(nod e *root)
{

char option;

141

if(root != NULL)
{

printf("\n Node %s has Left SubTree(Y/N)",root- >da ta);
fflush(stdin);
scanf("%c",&option);
if(option = = 'Y' || option = = 'y')
{

root- >lchild = getnode();
creat e_bina ry t r e e(root- >lchild);

}
else
{

root- >lchild = NULL;
creat e_bina ry t r e e(root- >lchild);

}

printf("\n Node %s has Right SubTree(Y/N) ",root- >da t a) ;
fflush(stdin);
scanf("%c",&option);
if(option = = 'Y' || option = = 'y')
{

root- >rchild = getnode();
creat e_bina ry t r e e(root- >rchild);

}
else
{

root- >rchild = NULL;
creat e_bina ry t r e e(root- >rchild);

}
}

}

void make_Queue(nod e *root,int paren t)
{

if(root != NULL)
{

node_ct r + + ;
Q[paren t] = root;
make_Queue(root- >lchild,pa re n t*2 + 1);
make_Queue(root- >rchild,par e n t*2 + 2);

}
}

delete_node(nod e *root, int paren t)
{

int index = 0;
if(root = = NULL)

printf("\n Empty TREE ");
else
{

node_ct r = 0;
make_Queue(root ,0);
index = node_ct r- 1;
Q[index] = NULL;
parent = (index- 1) /2;
if(2* paren t + 1 = = index)

Q[paren t]- >lchild = NULL;
else

Q[paren t]- >rchild = NULL;
}
printf("\n Node Deleted ..");

}

void inorder(node *root)
{

if(root != NULL)
{

inorder(root- >lchild);
printf("%3s",root- >da ta);

142

inorder(root- >rchild);
}

}

void preorde r (nod e *root)
{

if(root != NULL)
{

printf("%3s",root- >da ta);
preorde r (roo t- >lchild);
preorde r (roo t- >rchild);

}
}

void postorde r (nod e *root)
{

if(root != NULL)
{

postorde r (roo t- >lchild);
postorde r (roo t- >rchild);
printf("%3s", root- >da t a) ;

}
}

void print_leaf(node *root)
{

if(root != NULL)
{

if(root- >lchild = = NULL && root- >rchild = = NULL)
 printf("%3s ",root- >da t a) ;
 print_leaf(root- >lchild);
 print_leaf(root- >rchild);

}
}
int height(node *root)
{

if(root = = NULL)
return -1;

else
return (1 + max(heigh t(root- >lchild), height(root- >rchild)));

}

void print_tree(node *root, int line)
{

int i;
if(root != NULL)
{

print_tree(root- >rchild,line + 1) ;
printf("\n");
for(i=0;i <l ine;i + +)

printf(" ");
printf("%s", root- >da ta);
print_tree(root- >lchild,line + 1) ;

}
}

void level_orde r(node *Q[],int ctr)
{

int i;
for(i = 0; i < ctr ; i++)
{

if(Q[i] != NULL)
printf("%5s",Q[i]- >da ta);

}
}

int menu()
{

int ch;

143

clrscr();
printf("\n 1. Crea te Binary Tree ");
printf("\n 2. Inorder Traversal ");
printf("\n 3. Preorde r Traversal ");
printf("\n 4. Postorde r Traversal ");
printf("\n 5. Level Order Traversal");
printf("\n 6. Leaf Node ");
printf("\n 7. Print Height of Tree ");
printf("\n 8. Print Binary Tree ");
printf("\n 9. Delete a node ");
printf("\n 10. Quit ");
printf("\n Enter Your choice: ");
scanf("%d", &ch);
return ch;

}

void main()
{

int i,ch;
node *root = NULL;
do
{

ch = menu();
switch(ch)
{

case 1 :
if(root = = NULL)
{

root = getnode();
creat e_bina ry t r e e(root);

}
else
{

printf("\n Tree is already Creat ed ..");
}
break;

case 2 :
printf("\n Inorde r Traversal: ");
inorder(root);
break;

case 3 :
printf("\n Preorde r Traversal: ");
preorde r (roo t);
break;

case 4 :
printf("\n Postorde r Traversal : ");
postorde r (roo t);
break;

case 5:
printf("\n Level Order Traversal ..");
make_Queue(root ,0);
level_orde r(Q,node_ct r);
break;

case 6 :
printf("\n Leaf Nodes: ");
print_leaf(root);
break;

case 7 :
printf("\n Height of Tree: %d ", height(root));
break;

case 8 :
printf("\n Print Tree \n");
print_tree(root , 0);
break;

case 9 :
delete_node(root ,0);
break;

case 10 :
exit(0);

144

}
getch();

}while(1);
}

Non Recursive Binary Tree Traversal Algorithms:

We can also traverse a binary tree non recurs ively using stack data
structu r e for inorder , preorde r and postorde r .

Inorder Travers a l:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack and
stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a
vertex with right son exists, then set right son of vertex as curren t
vertex and return to step one.

Algorith m inorder()
{

stack[1] = 0
vertex = root

top: while(ver tex 0)≠
{

push the vertex into the stack
vertex = leftson(ver t ex)

}

pop the element from the stack and make it as vertex

while(ver t ex 0)≠
{

print the vertex node
if(rightson(ver t ex) 0)≠
{

vertex = rightson(ver t ex)
goto top

}
pop the element from the stack and made it as vertex

 }
}

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

145

1. Proceed down the left most path by pushing the right son of vertex onto stack, if any and
process each vertex. The traversing ends after a vertex with no left child exists.

2. Pop the vertex from stack, if vertex 0 then return to step one otherwise exit. ≠

Algorith m preorde r()
{
 stack[1] = 0

vertex = root.
 while(ver t ex 0)≠

{
 print vertex node
 if(rightson(ver t ex) 0)≠

push the right son of vertex into the stack.
 if(leftson(ver tex) 0)≠

vertex = leftson(ver t ex)
 else
 pop the element from the stack and made it as vertex
}

}

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex on to
stack and if vertex has a right son push –(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a negative
node is popped, then ignore the sign and return to step one.

Algorith m postorde r()
{

stack[1] = 0
vertex = root

 top: while(ver tex 0)≠
{

push vertex onto stack
if(rightson(ver t ex) 0)≠

push – (vertex) onto stack
vertex = leftson(ver t ex)

}
pop from stack and make it as vertex
while(ver t ex > 0)
{

146

print the vertex node
pop from stack and make it as vertex

}
if(vertex < 0)
{

vertex = - (vertex)
goto top

}
}

Example 1:

Traverse the following binary tree in pre, post and inorder using non-recursive
traversing algorithm.

A

B

K L

E

G

C
� Pr eo r d e r t r a v e rs a l y ie lds:
 A , B , D , G , K , H , L , M , C , E

� Po st o r d e r t r a v a rs a l y ie lds:
 K , G , L , M , H , D , B , E, C , A

� I n o r d e r t r a v a rs a l y ie lds:
 K , G , D , L , H , M , B , A , E, C

Bi n a ry T r e e Pr e , Po st a n d I n o r d e r T r av e r s i n g

D

H

M

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack and
stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with right son
exists, then set right son of vertex as current vertex and return to step one.

Current
vertex

Stack Processed nodes Remarks

A 0 PUSH 0

0 A B D G K PUSH the left most path of A

K 0 A B D G K POP K

G 0 A B D K G POP G since K has no right son

D 0 A B K G D POP D since G has no right son

H 0 A B K G D Make the right son of D as vertex

H 0 A B H L K G D PUSH the leftmost path of H

L 0 A B H K G D L POP L

H 0 A B K G D L H POP H since L has no right son

M 0 A B K G D L H Make the right son of H as vertex

0 A B M K G D L H PUSH the left most path of M

147

M 0 A B K G D L H M POP M

B 0 A K G D L H M B POP B since M has no right son

A 0 K G D L H M B A Make the right son of A as vertex

C 0 C E K G D L H M B A PUSH the left most path of C

E 0 C K G D L H M B A E POP E

C 0 K G D L H M B A E C Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex on to
stack and if vertex has a right son push –(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a negative
node is popped, then ignore the sign and return to step one.

Current
vertex

Stack Processed nodes Remarks

A 0 PUSH 0

0 A –C B D –H G K PUSH the left most path of A with a
-ve for right sons

0 A –C B D –H K G POP all +ve nodes K and G

H 0 A –C B D K G Pop H

0 A –C B D H –M L K G PUSH the left most path of H with a
-ve for right sons

0 A –C B D H –M K G L POP all +ve nodes L

M 0 A –C B D H K G L Pop M

0 A –C B D H M K G L PUSH the left most path of M with a
-ve for right sons

0 A –C K G L M H D B POP all +ve nodes M, H, D and B

C 0 A K G L M H D B Pop C

0 A C E K G L M H D B PUSH the left most path of C with a
-ve for right sons

0 K G L M H D B E C A POP all +ve nodes E, C and A

0 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if any and
process each vertex. The traversing ends after a vertex with no left child exists.

2. Pop the vertex from stack, if vertex 0 then return to step one otherwise exit. ≠

Current
vertex

Stack Processed nodes Remarks

A 0 PUSH 0

0 C H A B D G K PUSH the right son of each vertex onto stack
and process each vertex in the left most path

148

H 0 C A B D G K POP H

0 C M A B D G K H L PUSH the right son of each vertex onto stack
and process each vertex in the left most path

M 0 C A B D G K H L POP M

0 C A B D G K H L M
PUSH the right son of each vertex onto stack
and process each vertex in the left most path;
M has no left path

C 0 A B D G K H L M Pop C

0 A B D G K H L M C E
PUSH the right son of each vertex onto stack
and process each vertex in the left most path;
C has no right son on the left most path

0 A B D G K H L M C E Stop since stack is empty

Example 2:

Traverse the following binary tree in pre, post and inorder using non-recursive
traversing algorithm.

2

7

6 2 9

5

5

� Pr eo r d e r t r a v e rs a l y ie lds:
 2 , 7 , 2 , 6 , 5 , 1 1 , 5 , 9 , 4

� Po st o r d e r t r a v a rs a l y ie lds:
 2 , 5 , 1 1 , 6 , 7 , 4 , 9 , 5 , 2

� I n o r d e r t r a v a rs a l y ie lds:
 2 , 7 , 5 , 6 , 1 1 , 2 , 5 , 4 , 9

Bi n a ry T r e e Pr e , Po st a n d I n o r d e r T r av e r s i n g

4 1 1

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack and
stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with right son
exists, then set right son of vertex as current vertex and return to step one.

Current
vertex

Stack Processed nodes Remarks

2 0

0 2 7 2

2 0 2 7 2

7 0 2 2 7

6 0 2 6 5 2 7

5 0 2 6 2 7 5

11 0 2 2 7 5 6 11

149

5 0 5 2 7 5 6 11 2

9 0 9 4 2 7 5 6 11 2 5

4 0 9 2 7 5 6 11 2 5 4

0 2 7 5 6 11 2 5 4 9 Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex on to
stack and if vertex has a right son push –(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a negative
node is popped, then ignore the sign and return to step one.

Current
vertex

Stack Processed nodes Remarks

2 0

0 2 –5 7 –6 2

2 0 2 –5 7 –6 2

6 0 2 –5 7 2

0 2 –5 7 6 –11 5 2

5 0 2 –5 7 6 –11 2 5

11 0 2 –5 7 6 11 2 5

0 2 –5 2 5 11 6 7

5 0 2 5 –9 2 5 11 6 7

9 0 2 5 9 4 2 5 11 6 7

0 2 5 11 6 7 4 9 5 2 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps until the
stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if any and
process each vertex. The traversing ends after a vertex with no left child exists.

2. Pop the vertex from stack, if vertex 0 then return to step one otherwise exit. ≠

Current
vertex

Stack Processed nodes Remarks

2 0

0 5 6 2 7 2

6 0 5 11 2 7 2 6 5

11 0 5 2 7 2 6 5

0 5 2 7 2 6 5 11

5 0 9 2 7 2 6 5 11

9 0 2 7 2 6 5 11 5

0 2 7 2 6 5 11 5 9 4 Stop since stack is empty

150

7.4. Expression Trees:

Expression tree is a binary tree, because all of the operations are binary. It is also possible for a node
to have only one child, as is the case with the unary minus operator. The leaves of an expression tree
are operands, such as constants or variable names, and the other (non leaf) nodes contain operators.

Once an expression tree is constructed we can traverse it in three ways:

 Inorder Traversal
 Preorder Traversal
 Postorder Traversal

Figure 7.4.1 shows some more expression trees that represent arithmetic expressions given in infix
form.

/

b

+

c a

+

d

+

+

c +

d

b a

-

+ *

/

+ +

x a

*

y a c b

(a) (a + b) + (c / d)

(c) ((- a) + (x + y)) / ((+ b) * (c * a))

(b) ((a + b) + c) + d

Fi g u r e 7 . 4 . 1 Ex p r e s s i o n T r e e s

An expression tree can be generated for the infix and postfix expressions.

An algorithm to convert a postfix expression into an expression tree is as follows:

1. Read the expression one symbol at a time.

2. If the symbol is an operand, we create a one-node tree and push a pointer to it onto a
stack.

3. If the symbol is an operator, we pop pointers to two trees T1 and T2 from the stack (T1 is
popped first) and form a new tree whose root is the operator and whose left and right
children point to T2 and T1 respectively. A pointer to this new tree is then pushed onto
the stack.

Example 1:

Construct an expression tree for the postfix expression: a b + c d e + * *

The first two symbols are operands, so we create one-node trees and push pointers to them onto a
stack.

151

a b

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it is
pushed onto the stack.

a b

+

b

Next, c, d, and e are read, and for each one–node tree is created and a pointer to the corresponding
tree is pushed onto the stack.

a b

+

b c d e

Now a ‘+’ is read, so two trees are merged.

a b

+

b

c

d e

+ +

Continuing, a ‘*’ is read, so we pop two tree pointers and form a new tree with a ‘*’ as root.

a

+

b c

d e

+

+

e

*

Finally, the last symbol is read, two trees are merged, and a pointer to the final tree is left on the
stack.

152

a

+

b c

d
e

+

+

e

*

*

For the above tree:

Inorde r form of the expression: a + b * c * d + e

Preorde r form of the expression: * + a b * c + d e

Postorde r form of the expression: a b + c d e + * *

Example 2:

Construct an expression tree for the arithmetic expression:

(A + B * C) – ((D * E + F) / G)

Solution:

First convert the infix expression into postfix notation.

Postfix notation of the arithmetic expression is: A B C * + D E * F + G / -

The first three symbols are operands, so we create one-node trees and pointers to three nodes
pushed onto the stack.

A B C

Next, a ‘*’ is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it is
pushed onto the stack.

B

A *

C

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a pointer to it is
pushed onto the stack.

153

B

A
*

C

+

Next, D and E are read, and for each one–node tree is created and a pointer to the corresponding
tree is pushed onto the stack.

B

A
*

C

+ E D

Continuing, a ‘*’ is read, so we pop two tree pointers and form a new tree with a ‘*’ as root.

A

B C

D

+

* E

*

Proceeding similar to the previous steps, finally, when the last symbol is read, the expression tree is
as follows:

154

A

+

B

* G

C

+ /

*

-

+

F

D E

 UNIT- 5 GRAPHS

Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges. We will often
denote n = |V|, e = |E|.

A graph is genera lly displayed as figure 7.5.1, in which the vertices are
repres e n t e d by circles and the edges by lines.

An edge with an orienta t ion (i.e., arrow head) is a direc ted edge, while
an edge with no orienta t ion is our undirec te d edge.

If all the edges in a graph are undirec te d , then the graph is an
undirect e d graph. The graph of figures 7.5.1(a) is undirec t e d graphs. If
all the edges are direc ted; then the graph is a direc ted graph. The graph
of figure 7.5.1(b) is a directed graph. A direc ted graph is also called as
digraph.

A graph G is connecte d if and only if there is a simple path between any
two nodes in G.

A graph G is said to be complet e if every node a in G is adjacen t to every
other node v in G. A complete graph with n nodes will have n(n- 1)/2
edges. For example, Figure 7.5.1.(a) and figure 7.5.1.(d) are complete
graphs.

155

A directed graph G is said to be connecte d , or strongly connec ted , if for
each pair u, v for nodes in G there is a path from u to v and there is a
path from v to u. On the other hand, G is said to be unilate r ally
connected if for any pair u, v of nodes in G there is a path from u to v or
a path from v to u. For example, the digraph shown in figure 7.5.1 (e) is
strongly connec ted .

A B

C D

E

B D

G E C

F

A

Fi g u r e 7 . 5 . 1 V a r i o u s Gr a p h s

(b) (a)

v 4

v 2

v 3

v 1

(d)

v 4

v 2

v 3

v 1

(c)

(f)

v 4

v 2

v 3

v 1

v 1

v 2 v 3

v 4 v 5 v 6 v 7
(g) (e)

v 4

v 2

v 3

v 1

We can assign weight function to the edges: wG (e) is a weight of edge e E. The graph which has
such function assigned is called weighted graph.

The number of incoming edges to a vertex v is called in–degree of the vertex (denote indeg(v)). The
number of outgoing edges from a vertex is called out-degree (denote outdeg(v)). For example, let us
consider the digraph shown in figure 7.5.1(f),

indegree(v1) = 2outdegree(v1) = 1

indegree(v2) = 2outdegree(v2) = 0

A path is a sequence of vertices (v1, v2, , vk), where for all i, (vi, vi+1) E. A path is simple if all
vertices in the path are distinct. If there a path containing one or more edges which starts from a
vertex Vi and terminates into the same vertex then the path is known as a cycle. For example, there is
a cycle in figure 7.5.1 (a), figure 7.5.1 (c) and figure 7.5.1 (d).

If a graph (digraph) does not have any cycle then it is called acyclic graph. For example, the graphs
of figure 7.5.1 (f) and figure 7.5.1 (g) are acyclic graphs.

A graph G’ = (V’, E’) is a sub-graph of graph G = (V, E) iff V’ V and E’ E.

A Forest is a set of disjoint trees. If we remove the root node of a given tree then it becomes forest.
The following figure shows a forest F that consists of three trees T1, T2 and T3.

156

A graph that has either self loop or parallel edges or both is called multi-graph.

Tree is a connected acyclic graph (there aren’t any sequences of edges that go around in a loop). A
spanning tree of a graph G = (V, E) is a tree that contains all vertices of V and is a subgraph of G. A
single graph can have multiple spanning trees.

Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.

2. If any edge is removed from T, then T becomes disconnected.

3. If we add any edge into T, then the new graph will contain a cycle.

4. Number of edges in T is n-1.

Representation of Graphs:

There are two ways of representing digraphs. They are:

 Adjacency matrix.

 Adjacency List.

 Incidence matrix.

Adjacency matrix:

In this representation, the adjacency matrix of a graph G is a two dimensional n x n matrix, say A =
(ai,j), where

otherwise

vtovfromedgeanisthereif
a ji

ji
0

1
,

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the graph is
directed. This matrix is also called as Boolean matrix or bit matrix.

1

4

3 2

5

Fi g u r e 7 . 5 . 2 . A g r a p h a n d it s A d j a c e n c y m a t r i x

G 1 :

(a)

Figure 7.5.2(b) shows the adjacency matrix representation of the graph G1 shown in figure 7.5.2(a).
The adjacency matrix is also useful to store multigraph as well as weighted graph. In case of

A

DB

EC F

Q

P

R

X

Y

Z
T2 T3T1

A F or e s t F

1 2 3 4 5
1 0 1 1 0 1
2 0 0 1 1 1
3 0 0 0 1 0
4 0 0 0 0 0
5 0 0 1 1 0

(b)

157

multigraph representation, instead of entry 0 or 1, the entry will be between number of edges between
two vertices.

In case of weighted graph, the entries are weights of the edges between the vertices. The adjacency
matrix for a weighted graph is called as cost adjacency matrix. Figure 7.5.3(b) shows the cost
adjacency matrix representation of the graph G2 shown in figure 7.5.3(a).

B D

G E C

F

A
6

3 2

4

1

2 1

4

1

2

4

2

Fi g u r e 7 . 5 . 3 W e i g h t e d g r a p h a n d it s Co s t a d j ac e nc y m a t r i x

(a)

Adjace n cy List :

In this repres en t a t ion , the n rows of the adjacency matrix are
repres e n t e d as n linked lists. An array Adj[1, 2, n] of pointer s
where for 1 < v < n, Adj[v] points to a linked list containing the vertices
which are adjacen t to v (i.e. the vertices that can be reached from v by a
single edge). If the edges have weights then these weights may also be
stored in the linked list element s . For the graph G in figure 7.5.2 (a), the
adjacency list in shown in figure 7.5.4 (b).

1

0

1 1

0 1

0 0 1

3 2 1

1

3

2

1

2

3

3

3 1 2

2

(a) A d j ac e nc y M a t r i x (b) A d j ac e nc y L i s t

Fi g u r e 7 . 5 . 4 A d j ac e n c y m a t r i x a n d a d j ac e nc y l i s t

Incidence Matrix:

In this representation, if G is a graph with n vertices, e edges and no self loops, then incidence matrix
A is defined as an n by e matrix, say A = (ai,j), where

otherwise

vtoincidentjedgeanisthereif
a i

ji
0

1
,

Here, n rows correspond to n vertices and e columns correspond to e edges. Such a matrix is called
as vertex-edge incidence matrix or simply incidence matrix.

A B C D E F G
A 0 3 6
B 3 0 2 4
C 6 2 0 1 4 2
D 4 1 0 2 4
E 4 2 0 2 1
F 2 2 0 1
G 4 1 1 0

G2:

(b)

158

B D

G E C

F

A
g

a b

c

d

k l

f

i

e

h

j

Fi g u r e 7 . 5 . 4 Gr a p h a n d it s i nc i d e nc e m a t r i x

(a)

(b)

Figure 7.5.4(b) shows the incidence matrix representation of the graph G1 shown in figure 7.5.4(a).

7.6. Minimum Spanning Tree (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the vertex set of the
given graph, and whose edge set is a subset of the edge set of the given graph. i.e., any connected
graph will have a spanning tree.

Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum spanning tree (MST)
is a spanning tree with the smallest possible weight.

Example:

G:

A g r a p h G:
T h r e e (o f m a n y p o s s i b l e) s p a n n i n g t r e e s f r o m g r a p h G:

5

2

4

6

1

3

A w e i g h t e d g r a p h G: T h e m i n i m a l s p a n n i n g t r e e f r o m w e i g h t e d g r a p h G:

2

3

1

G:

Let's consider a couple of real-world examples on minimum spanning tree:

 One practical application of a MST would be in the design of a network. For instance, a
group of individuals, who are separated by varying distances, wish to be connected
together in a telephone network. Although MST cannot do anything about the distance
from one connection to another, it can be used to determine the least cost paths with no
cycles in this network, thereby connecting everyone at a minimum cost.

 Another useful application of MST would be finding airline routes. The vertices of the
graph would represent cities, and the edges would represent routes between the cities.
MST can be applied to optimize airline routes by finding the least costly paths with no
cycles.

Minimum spanning tree, can be constructed using any of the following two algorithms:

a b c d e f g h i j k l
A 1 0 0 0 0 0 1 0 0 0 0 0
B 1 1 1 0 0 0 0 0 0 0 0 0
C 0 1 0 1 0 0 1 1 0 0 1 0
D 0 0 1 1 1 1 0 0 0 0 0 0
E 0 0 0 0 1 0 0 1 1 1 0 0
F 0 0 0 0 0 0 0 0 0 1 1 1
G 0 0 0 0 0 1 0 0 1 0 0 1

159

1. Kruskal’s algorithm and

2. Prim algorithm.

Both algorithms differ in their methodology, but both eventually end up with the MST. Kruskal's
algorithm uses edges, and Prim’s algorithm uses vertex connections in determining the MST.

7.6.1. Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. picking an edge with
the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the shortest
(least cost) edge, while avoiding the creation of cycles, until (n - 1) edges have been added.
Sometimes two or more edges may have the same cost.

The order in which the edges are chosen, in this case, does not matter. Different MST’s may result,
but they will all have the same total cost, which will always be the minimum cost.

Kruskal’s Algorithm for minimal spanning tree is as follows:

1. Make the tree T empty.

2. Repea t the steps 3, 4 and 5 as long as T contains less than n - 1
edges and E is not empty otherwise, proceed to step 6.

3. Choose an edge (v, w) from E of lowest cost.

4. Delete (v, w) from E.

5. If (v, w) does not crea te a cycle in T

then Add (v, w) to T

else discard (v, w)

6. If T contains fewer than n - 1 edges then print no spanning tree.

Exampl e 1:

Construc t the minimal spanning tree for the graph shown below:

 3

5

2 1

6

4

15

50 10

30

20

 35
45 40

25
55

Arrange all the edges in the increasing order of their costs:

Cost 10 15 20 25 30 35 40 45 50 55
Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6)

The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

160

Edge Cost Stag e s in Kruskal’s algori t h m Remark s

(1, 2) 10
2 1

3

4
5

6

The edge between vertices 1 and 2 is the
first edge selected . It is included in the
spanning tree.

(3, 6) 15
2 1

6

5

3

4

Next, the edge betwee n vertices 3 and 6
is selected and included in the tree.

(4, 6) 20
2 1

6

5

3

4

The edge between vertices 4 and 6 is
next included in the tree.

(2, 6) 25
2 1

6

5

3

4

The edge between vertices 2 and 6 is
considere d next and included in the tree.

(1, 4) 30 Reject The edge between the vertices 1 and 4 is
discarded as its inclusion crea te s a cycle.

(3, 5) 35
2 1

6

5

3

4

Finally, the edge between vertices 3 and
5 is considere d and included in the tree
built. This complet es the tree.

The cost of the minimal spanning tree is
105 .

Exampl e 2:

Construc t the minimal spanning tree for the graph shown below:

1

2

3

6

5

4

7

2 8

1 0

1 6

1 2

2 2

2 5
2 4

1 4

1 8

Solut i o n:

161

Arrange all the edges in the increasing order of their costs:

Cost 10 12 14 16 18 22 24 25 28
Edge (1, 6) (3, 4) (2, 7) (2, 3) (4, 7) (4, 5) (5, 7) (5, 6) (1, 2)

The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

Edge Cost Stag e s in Kruskal’s algori t h m Remark s

(1, 6) 10
2

1

3

4

5

6

7

The edge between vertices 1 and 6 is the
first edge selected . It is included in the
spanning tree.

(3, 4) 12
2

1

3

4

5

6

7

Next, the edge betwee n vertices 3 and 4
is selected and included in the tree.

(2, 7) 14
2

1

3

4

5

6

7

The edge between vertices 2 and 7 is
next included in the tree.

(2, 3) 16
2

1

3

4

5

6

7

The edge between vertices 2 and 3 is
next included in the tree.

(4, 7) 18 Reject The edge between the vertices 4 and 7 is
discarded as its inclusion crea te s a cycle.

(4, 5) 22
2

1

3

4

5

6

7

The edge between vertices 4 and 7 is
considere d next and included in the tree.

(5, 7) 24 Reject The edge between the vertices 5 and 7 is
discarded as its inclusion crea te s a cycle.

162

(5, 6) 25
2

1

3

4

5

6

7

Finally, the edge between vertices 5 and 6 is
considered and included in the tree built. This
completes the tree.

The cost of the minimal spanning tree is
99 .

7.6.2 . Reach a b i l i ty Matrix (Warshall’s Algorithm) :

Warshall’s algori thm requires to know which edges exist and which do
not. It doesn’t need to know the lengths of the edges in the given
directed graph. This informa tion is convenien tly displayed by adjacency
matrix for the graph, in which a ‘1’ indicates the existence of an edge
and ‘0’ indicate s non- existence .

A d j ac e nc y M a t r i x W a r s h a l l ’ s A l g o r it h m
A l l Pa ir s Rec h a b i l i t y

M a t r i x

It begins with the adjacency matrix for the given graph, which is called
A0 , and then updates the matrix ‘n’ times, producing matrices called A 1 ,
A2 , , An and then stops.

In warshall’s algorithm the matrix Ai merely contains information about
the existence of i – paths. A 1 entry in the matrix A i will correspond to the
existence of an i – paths and O entry will correspond to non- existence .
Thus when the algorithm stops, the final matrix, the matrix An , contains
the desired connec tivity information.

A 1 entry indicates a pair of vertices, which are connec ted , and O entry
indicates a pair, which are not. This matrix is called a reachabili ty matrix
or path matrix for the graph. It is also called the transi tive closure of the
original adjacency matrix.

The update rule for computing Ai from Ai-1 in warshall’s algorithm is:

Ai [x, y] = Ai-1 [x, y] ۷ (Ai-1 [x, i] ٨ Ai-1 [i, y]) ---- (1)

Exampl e 1:

Use warshall’s algorithm to calcula te the reachabili ty matrix for the
graph:

163

3 2

1 4

1 1

4

7

7

5

1

6

We begin with the adjacency matrix of the graph ‘A0’

0111

0000

1100

0110

4

3

2

1

0A

The first step is to compute ‘A1’ matrix. To do so we will use the updating
rule – (1).

Before doing so we notice that only 1 entry in A0 must remain 1 in A1 ,
since in Boolean algebra 1 + (any thing) = 1. Since these are only nine 0
entries in A0 , there are only nine entries in A0 that need to be updated .

A1[1, 1] = A0[1, 1] ۷ (A0[1, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[2, 1] = A0[2, 1] ۷ (A0[2, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[2, 2] = A0[2, 2] ۷ (A0[2, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 1] = A0[3, 1] ۷ (A0[3, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[3, 2] = A0[3, 2] ۷ (A0[3, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 3] = A0[3, 3] ۷ (A0[3, 1] ٨ A0[1, 3]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 4] = A0[3, 4] ۷ (A0[3, 1] ٨ A0[1, 4]) = 0 ۷ (0 ٨ 0) = 0

A1[4, 4] = A0[4, 4] ۷ (A0[4, 1] ٨ A0[1, 4]) = 0 ۷ (1 ٨ 0) = 0

0111

0000

1100

0110

4

3

2

1

1A

Next, A2 must be calcula ted from A1; but again we need to upda te the 0
entries,

A2[1, 1] = A1[1, 1] ۷ (A1[1, 2] ٨ A1[2, 1]) = 0 ۷ (1 ٨ 0) = 0

A2[1, 4] = A1[1, 4] ۷ (A1[1, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1

A2[2, 1] = A1[2, 1] ۷ (A1[2, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0

A2[2, 2] = A1[2, 2] ۷ (A1[2, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0

A2[3, 1] = A1[3, 1] ۷ (A1[3, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0

A2[3, 2] = A1[3, 2] ۷ (A1[3, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0

164

A2[3, 3] = A1[3, 3] ۷ (A1[3, 2] ٨ A1[2, 3]) = 0 ۷ (0 ٨ 1) = 0

A2[3, 4] = A1[3, 4] ۷ (A1[3, 2] ٨ A1[2, 4]) = 0 ۷ (0 ٨ 1) = 0

A2[4, 4] = A1[4, 4] ۷ (A1[4, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1

1111

0000

1100

1110

4

3

2

1

2A

This matrix has only seven 0 entries, and so to compute A3 , we need to do
only seven computa t ions .

A3[1, 1] = A2[1, 1] ۷ (A2[1, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0

A3[2, 1] = A2[2, 1] ۷ (A2[2, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0

A3[2, 2] = A2[2, 2] ۷ (A2[2, 3] ٨ A2[3, 2]) = 0 ۷ (1 ٨ 0) = 0

A3[3, 1] = A2[3, 1] ۷ (A2[3, 3] ٨ A2[3, 1]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 2] = A2[3, 2] ۷ (A2[3, 3] ٨ A2[3, 2]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 3] = A2[3, 3] ۷ (A2[3, 3] ٨ A2[3, 3]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 4] = A2[3, 4] ۷ (A2[3, 3] ٨ A2[3, 4]) = 0 ۷ (0 ٨ 0) = 0

1111

0000

1100

1110

4

3

2

1

3A

Once A3 is calcula t ed , we use the upda te rule to calcula te A4 and stop.
This matrix is the reachabili ty matrix for the graph.

A4[1, 1] = A3 [1, 1] ۷ (A3 [1, 4] ٨ A3 [4, 1]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[2, 1] = A3 [2, 1] ۷ (A3 [2, 4] ٨ A3 [4, 1]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[2, 2] = A3 [2, 2] ۷ (A3 [2, 4] ٨ A3 [4, 2]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[3, 1] = A3 [3, 1] ۷ (A3 [3, 4] ٨ A3 [4, 1]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 2] = A3 [3, 2] ۷ (A3 [3, 4] ٨ A3 [4, 2]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 3] = A3 [3, 3] ۷ (A3 [3, 4] ٨ A3 [4, 3]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 4] = A3 [3, 4] ۷ (A3 [3, 4] ٨ A3 [4, 4]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

1111

0000

1111

1111

4

3

2

1

4A

165

Note that according to the algorithm vertex 3 is not reachable from itself
1. This is because as can be seen in the graph, there is no path from
vertex 3 back to itself.

7.6.3 . Travers in g a Graph:

Many graph algorithms require one to systematically examine the nodes and edges of a graph G.
There are two standard ways to do this. They are:

 Breadth first traversal (BFT)

 Depth first traversal (DFT)

The BFT will use a queue as an auxiliary structure to hold nodes for future processing and the DFT
will use a STACK.

During the execution of these algorithms, each node N of G will be in one
of three states , called the status of N, as follows:

1. STATUS = 1 (Ready state): The initial state of the node N.

2. STATUS = 2 (Waiting state): The node N is on the QUEUE or
STACK, waiting to be processed .

3. STATUS = 3 (Process ed state): The node N has been processed .

Both BFS and DFS impose a tree (the BFS/DFS tree) on the structu r e of
graph. So, we can compute a spanning tree in a graph. The computed
spanning tree is not a minimum spanning tree. The spanning trees
obtained using depth first searches are called depth first spanning trees .
The spanning trees obtained using bread t h first searches are called
Breadth first spanning trees.

Breadt h first searc h and travers a l:

The general idea behind a bread th first travers a l beginning at a star ting
node A is as follows. First we examine the star ting node A. Then we
examine all the neighbors of A. Then we examine all the neighbors of
neighbor s of A. And so on. We need to keep track of the neighbors of a
node, and we need to guaran t e e that no node is process ed more than
once. This is accomplished by using a QUEUE to hold nodes that are
waiting to be process ed , and by using a field STATUS that tells us the
curren t status of any node. The spanning trees obtained using BFS are
called Bread th first spanning trees.

Breadth first traversal algorithm on graph G is as follows:

This algorithm executes a BFT on graph G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Put the star ting node A in QUEUE and change its status to the
waiting state (STATUS = 2).

166

3. Repea t the following steps until QUEUE is empty:

a. Remove the front node N of QUEUE. Process N and change
the status of N to the processed state (STATUS = 3).

b. Add to the rear of QUEUE all the neighbors of N that are in
the ready state (STATUS = 1), and change their status to the
waiting state (STATUS = 2).

4. Exit.

Depth first searc h and traversa l:

Depth first search of undirec t e d graph proceeds as follows: First we
examine the star ting node V. Next an unvisited vertex 'W' adjacen t to 'V'
is selected and a depth first search from 'W' is initiated. When a vertex
'U' is reached such that all its adjacen t vertices have been visited, we
back up to the last vertex visited, which has an unvisited vertex 'W'
adjacen t to it and initiate a depth first search from W. The search
termina te s when no unvisited vertex can be reache d from any of the
visited ones.

This algori thm is similar to the inorder travers a l of binary tree. DFT
algorithm is similar to BFT except now use a STACK instead of the
QUEUE. Again field STATUS is used to tell us the curren t status of a
node.

The algorithm for depth first traversa l on a graph G is as follows.

This algorithm executes a DFT on graph G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Push the star ting node A into STACK and change its status to the
waiting state (STATUS = 2).

3. Repea t the following steps until STACK is empty:

a. Pop the top node N from STACK. Process N and change the
status of N to the processe d state (STATUS = 3).

b. Push all the neighbors of N that are in the ready state
(STATUS = 1), and change their status to the waiting state
(STATUS = 2).

4. Exit.

Example 1:

Consider the graph shown below. Traverse the graph shown below in breadth first order and depth
first order.

167

A

C B F

G E D

K J

A Gr a p h G

Breadt h - first searc h and travers a l:

The steps involved in breadth first traversal are as follows:

Curre
nt

Node
QUEUE

Processed
Nodes

Status

A B C D E F G J K

1 1 1 1 1 1 1 1 1

A 2 1 1 1 1 1 1 1 1

A F C B A 3 2 2 1 1 2 1 1 1

F C B D A F 3 2 2 2 1 3 1 1 1

C
B D E
G

A F C 3 2 3 2 2 3 2 1 1

B D E G A F C B 3 3 3 2 2 3 2 1 1

D E G J A F C B D 3 3 3 3 2 3 2 2 1

E G J K A F C B D E 3 3 3 3 3 3 2 2 2

G J K A F C B D E G 3 3 3 3 3 3 3 2 2

J K A F C B D E G J 3 3 3 3 3 3 3 3 2

K EMPTY
A F C B D E G J
K

3 3 3 3 3 3 3 3 3

For the above graph the Breadth first traversal sequence is: A F C B D E G J K.

Depth-first search and traversal:

The steps involved in depth first traversal are as follows:

Curre
nt

Node
Stack

Processed
Nodes

Status

A B C D E F G J K

1 1 1 1 1 1 1 1 1
A 2 1 1 1 1 1 1 1 1

A B C F A 3 2 2 1 1 2 1 1 1
F B C D A F 3 2 2 2 1 3 1 1 1

Nod
e

Adjac e n c y
Lis t

A F, C, B

B A, C, G

C
A, B, D, E, F,
G

D C, F, E, J

E C, D, G, J, K

F A, C, D

G B, C, E, K

J D, E, K

K E, G, JAdjacency list for graph G

168

D B C E J A F D 3 2 2 3 2 3 1 2 1
J B C E

K
A F D J

3 2 2 3 2 3 1 3 2

K B C E
G

A F D J K
3 2 2 3 2 3 2 3 3

G B C E A F D J K G 3 2 2 3 2 3 3 3 3
E B C A F D J K G E 3 2 2 3 3 3 3 3 3
C B A F D J K G E C 3 2 3 3 3 3 3 3 3
B EMPTY A F D J K G E C

B
3 3 3 3 3 3 3 3 3

For the above graph the Depth first traversal sequence is: A F D J K G E C B.

Exampl e 2:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first
and depth first spanning trees.

A

D

F

B C G

H I

J K

L M

E

The Graph G

If the depth first travers a l is initiated from vertex A, then the vertices of
graph G are visited in the order: A F E D G L J K M H I C B . The depth
first spanning tree is shown in the figure given below:

A

B F

D

E

G

L H C

J I

K M

D e p t h f i r s t T r a v e r s a l

Node Adjacency List
A F, B, C, G
B A
C A, G
D E, F
E G, D, F
F A, E, D
G A, L, E, H, J, C
H G, I
I H
J G, L, K, M
K J
L G, J, M
M L, J

The adjacency list for the graph G

169

If the bread th first travers a l is initiated from vertex A, then the vertices
of graph G are visited in the order: A F B C G E D L H J M I K . The
bread th first spanning tree is shown in the figure given below:

A

B F C G

H E D L

M

J

K I

Br e a d t h f ir s t t r av e r s a l

Exampl e 3:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first
and depth first spanning trees.

7

8

1

3

6 5

2

4

Gr a p h G

Vert ex

1

2

3

4

5

6

7

8

2 3

4 1

6 1

8 2

2

3

3

4

8

8

8

5 6 7

5

7

Adj acency list fo r gr aph G

If the depth first is initiated from vertex 1, then the vertices of graph G
are visited in the order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree
is as follows:

170

7

8

1

3

6 5

2

4

De p t h F ir s t S p a n n i n g T r e e

Breadt h first searc h and travers a l:

If the bread th first search is initiated from vertex 1, then the vertices of
G are visited in the order: 1, 2, 3, 4, 5, 6, 7, 8. The bread th first spanning
tree is as follows:

7.7. General Tree s (m- ary tree):

If in a tree, the outdegr e e of every node is less than or equal to m , the
tree is called an m- ary tree. If the outdeg re e of every node is exactly
equal to m or zero then the tree is called a full or complet e m- ary tree.
For m = 2, the trees are called binary and full binary trees.

Differences between trees and binary trees:

TREE BINARY TREE

Each element in a tree can have any number of
subtrees.

Each element in a binary tree has at most two
subtrees.

The subtrees in a tree are unordered.
The subtrees of each element in a binary tree
are ordered (i.e. we distinguish between left and
right subtrees).

7

8

1

3

6 5

2

4

Br e a d t h F ir s t S p a n n i n g T r e e

171

Convert in g a m- ary tree (gen e r a l tree) to a binary tree:

There is a one- to- one mapping between genera l ordered trees and binary
trees. So, every tree can be uniquely repres e n t e d by a binary tree.
Furthe r m o r e , a fores t can also be repre se n t e d by a binary tree.

Conversion from genera l tree to binary can be done in two stages .

 As a first step, we delete all the branches originating in every
node except the left most branch.

 We draw edges from a node to the node on the right, if any,
which is situa ted at the same level.

 Once this is done then for any particula r node, we choose its left
and right sons in the following manne r :

 The left son is the node, which is immedia te ly below the
given node, and the right son is the node to the immedia t e
right of the given node on the same horizontal line. Such a
binary tree will not have a right subtree .

Example 1:

Convert (Encoding m-ary trees as binary trees) the following ordered tree into a binary tree.

6 7 8 9 1 0 1 1

2 3 4 5

1

Solution:

Stage 1 tree using the above mentioned procedure is as follows:

6 7 8 9 1 0 1 1

2 3 4 5

1

Stage 2 tree using the above mentioned procedu r e is as follows:

172

1

2

6 3

7 8 4

5

9

1 0

1 1

Exampl e 2:

Construc t a unique binary tree from the given fores t.

4 5 6

8 9

1 0

2 3

1 1

7 1

1 0

1 2 1 3

Solution:

Stage 1 tree using the above mentioned procedure is as follows:

4 5 6

8 9 2 3

1 1

7 1

1 0

1 2 1 3

Stage 2 tree using the above mentioned procedure is as follows (binary tree representation of forest):

173

4

5 6

8

9

2

3

7

1

1 0

1 2

1 3

9 1 1

Searc h and Travers a l Techn iq u e s for m- ary tree s:

Search involves visiting nodes in a tree in a systematic manner, and may or may not result into a visit
to all nodes. When the search necessarily involved the examination of every vertex in the tree, it is
called the traversal. Traversing of a tree can be done in two ways.

1. Depth first search or travers al .

2. Breadth first search or traversa l .

Depth first searc h:

In Depth first search , we begin with root as a star t state , then some
successor of the star t state , then some successo r of that state , then some
successor of that and so on, trying to reach a goal state . One simple way
to implemen t depth first search is to use a stack data struc tu r e
consis ting of root node as a star t state .
If depth first search reaches a state S without successor s , or if all the
successor s of a state S have been chosen (visited) and a goal state has
not get been found, then it “backs up” that means it goes to the
immedia t ely previous state or predec esso r formally, the state whose
successor was ‘S’ originally.

To illustra t e this let us conside r the tree shown below.

S

A

D

E

B

C

H

F

I

J

G

K

G O A L

ST A RT

Suppose S is the star t and G is the only goal state . Depth first search will

174

first visit S, then A, then D. But D has no successors , so we must back up
to A and try its second successor , E. But this doesn’t have any successors
either , so we back up to A again. But now we have tried all the
successor s of A and haven’t found the goal state G so we must back to
‘S’. Now ‘S’ has a second successor , B. But B has no successors , so we
back up to S again and choose its third successor , C. C has one
successor , F. The first successor of F is H, and the first of H is J. J doesn’t
have any successor s , so we back up to H and try its second successor .
And that’s G, the only goal state .

So the solution path to the goal is S, C, F, H and G and the states
considere d were in order S, A, D, E, B, C, F, H, J, G.

Disadvan ta g e s :

1. It works very fine when search graphs are trees or lattices, but
can get struck in an infinite loop on graphs . This is becaus e
depth first search can travel around a cycle in the graph
forever .

To eliminate this keep a list of states previously visited, and
never permit search to return to any of them.

2. We cannot come up with shortes t solution to the problem.

Breadt h first searc h:

Breadth-first search starts at root node S and “discovers" which vertices are reachable from S.
Breadth-first search discovers vertices in increasing order of distance. Breadth-first search is named
because it visits vertices across the entire breadth.

To illustrate this let us consider the following tree:

S

A

D

E

B

C

H

F

I

J

G

K

G O A L

ST A RT

Breadth first search finds states level by level. Here we first check all the
immedia t e successors of the star t state. Then all the immedia t e
successor s of these , then all the immedia t e successor s of these, and so
on until we find a goal node. Suppose S is the star t state and G is the
goal state . In the figure, star t state S is at level 0; A, B and C are at level
1; D, e and F at level 2; H and I at level 3; and J, G and K at level 4.

175

So bread th first search , will conside r in order S, A, B, C, D, E, F, H, I, J
and G and then stop because it has reached the goal node.

Breadth first search does not have the dange r of infinite loops as we
consider states in order of increasing number of branches (level) from
the star t state .

One simple way to implemen t bread th first search is to use a queue data
structu r e consisting of just a star t state .

7.8. Sparse Matrices:

A sparse matrix is a two–dimensional array having the value of majority elements as
null. The density of the matrix is the number of non-zero elements divided by the
total number of matrix elements. The matrices with very low density are often good
for use of the sparse format. For example,

0400

0031

0020

5000

A

As far as the storage of a sparse matrix is concerned, storing of null elements is
nothing but wastage of memory. So we should devise technique such that only non-
null elements will be stored.

The matrix A produces:

(3, 1) 1
(2, 2) 2

S = (3, 2) 3
(4, 3) 4
(1, 4) 5

The printed output lists the non-zero elements of S, together with their row and
column indices. The elements are sorted by columns, reflecting the internal data
structure.

In large number of applications, sparse matrices are involved. One approach is to
use the linked list.

The progra m to repre s e n t spars e matrix:

/* Check whethe r the given matrix is sparse matrix or not, if so then
print in alterna t ive form for storage . */

include <s tdio.h >
include <conio.h >

176

main()
{

int matrix[20][20], m, n, total_eleme n t s , total_zeros = 0, i, j;
clrscr();
printf("\n Enter Number of rows and columns: ");
scanf("%d %d",&m, &n);
total_elemen t s = m * n;
printf("\n Enter data for sparse matrix: ");
for(i = 0; i < m ; i+ +)
{

for(j = 0; j < n ; j+ +)
{

scanf("%d", &matrix[i][j]);
if(matrix[i][j] = = 0)
{

total_zeros + + ;
}

}
}
if(total_zeros > total_elemen t s /2)
{

printf("\n Given Matrix is Sparse Matrix..");
 printf("\n The Represen t a ion of Sparse Matrix is: \n");

printf("\n Row \t Col \t Value ");
for(i = 0; i < m ; i+ +)
{

for(j = 0; j < n ; j+ +)
{

if(matrix[i][j] != 0)
{

printf("\n %d \t %d \t %d",i,j,mat r ix[i][j]);
}

}
}

}
else

printf("\n Given Matrix is Not a Sparse Matrix..");
}

177

LECTURE NOTES

on
DATA STRUCTURES

201 8 – 201 9

I B. Tech II Sem e s t e r (R17)
Mr. K Munivara Prasad, Associ a t e Profe s s o r

CHADALAWADA RAMANAMMA ENGINEERING COLLEGE
(AUTONOMOUS)

Chadalawada Nagar, Renigunta Road, Tirupati – 517 506

Department of Computer Science and Engineering

1

	Klfsajdf
	Node
	Adjacency List
	LINEAR SEARCH
	Algorithm:
	Index

	BINARY SEARCH
	Index
	Index
	Index
	Algorithm
	Unit 3

	6.3. A Complete Source Code for the Implementation of Single Linked List:
	6.5. A Complete Source Code for the Implementation of Double Linked List:
	6.7. A Complete Source Code for the Implementation of Circular Single Linked List:
	6.9. A Complete Source Code for the Implementation of Circular Double Linked List:
	Unit
	7.3. BinarY Tree Traversal Techniques:
	From the preorder sequence B D G, the root of tree is: B
	From the preorder sequence D G, the root of the tree is: D
	From the preorder sequence C E H I F, the root of the left sub tree is: C
	From the preorder sequence E H I, the root of the tree is: E

	Example 2:
	From the postorder sequence n1 n3 n5 n4 n2, the root of tree is: n2
	From the postorder sequence n3 n5 n4, the root of the tree is: n4
	From the postorder sequence n8 n7 n9, the root of the left sub tree is: n9
	From the postorder sequence n8 n7, the root of the tree is: n7

	
	Binary Tree Creation and Traversal Using Arrays:
	Binary Tree Creation and Traversal Using Pointers:
	Non Recursive Binary Tree Traversal Algorithms:
	Preorder Traversal:
	Postorder Traversal:
	7.6.1. Kruskal’s Algorithm

	Klfsajdf

